Viewing file: rose_link.c (7.9 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * ROSE release 003 * * This code REQUIRES 2.1.15 or higher/ NET3.038 * * This module: * This module is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * History * ROSE 001 Jonathan(G4KLX) Cloned from rose_timer.c * ROSE 003 Jonathan(G4KLX) New timer architecture. */
#include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <net/ax25.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <net/sock.h> #include <asm/segment.h> #include <asm/system.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/netfilter.h> #include <net/rose.h>
static void rose_ftimer_expiry(unsigned long); static void rose_t0timer_expiry(unsigned long);
void rose_start_ftimer(struct rose_neigh *neigh) { del_timer(&neigh->ftimer);
neigh->ftimer.data = (unsigned long)neigh; neigh->ftimer.function = &rose_ftimer_expiry; neigh->ftimer.expires = jiffies + sysctl_rose_link_fail_timeout;
add_timer(&neigh->ftimer); }
void rose_start_t0timer(struct rose_neigh *neigh) { del_timer(&neigh->t0timer);
neigh->t0timer.data = (unsigned long)neigh; neigh->t0timer.function = &rose_t0timer_expiry; neigh->t0timer.expires = jiffies + sysctl_rose_restart_request_timeout;
add_timer(&neigh->t0timer); }
void rose_stop_ftimer(struct rose_neigh *neigh) { del_timer(&neigh->ftimer); }
void rose_stop_t0timer(struct rose_neigh *neigh) { del_timer(&neigh->t0timer); }
int rose_ftimer_running(struct rose_neigh *neigh) { return timer_pending(&neigh->ftimer); }
int rose_t0timer_running(struct rose_neigh *neigh) { return timer_pending(&neigh->t0timer); }
static void rose_ftimer_expiry(unsigned long param) { }
static void rose_t0timer_expiry(unsigned long param) { struct rose_neigh *neigh = (struct rose_neigh *)param;
rose_transmit_restart_request(neigh);
neigh->dce_mode = 0;
rose_start_t0timer(neigh); }
/* * Interface to ax25_send_frame. Changes my level 2 callsign depending * on whether we have a global ROSE callsign or use the default port * callsign. */ static int rose_send_frame(struct sk_buff *skb, struct rose_neigh *neigh) { ax25_address *rose_call;
if (ax25cmp(&rose_callsign, &null_ax25_address) == 0) rose_call = (ax25_address *)neigh->dev->dev_addr; else rose_call = &rose_callsign;
neigh->ax25 = ax25_send_frame(skb, 260, rose_call, &neigh->callsign, neigh->digipeat, neigh->dev);
return (neigh->ax25 != NULL); }
/* * Interface to ax25_link_up. Changes my level 2 callsign depending * on whether we have a global ROSE callsign or use the default port * callsign. */ static int rose_link_up(struct rose_neigh *neigh) { ax25_address *rose_call;
if (ax25cmp(&rose_callsign, &null_ax25_address) == 0) rose_call = (ax25_address *)neigh->dev->dev_addr; else rose_call = &rose_callsign;
neigh->ax25 = ax25_find_cb(rose_call, &neigh->callsign, neigh->digipeat, neigh->dev);
return (neigh->ax25 != NULL); }
/* * This handles all restart and diagnostic frames. */ void rose_link_rx_restart(struct sk_buff *skb, struct rose_neigh *neigh, unsigned short frametype) { struct sk_buff *skbn;
switch (frametype) { case ROSE_RESTART_REQUEST: rose_stop_t0timer(neigh); neigh->restarted = 1; neigh->dce_mode = (skb->data[3] == ROSE_DTE_ORIGINATED); rose_transmit_restart_confirmation(neigh); break;
case ROSE_RESTART_CONFIRMATION: rose_stop_t0timer(neigh); neigh->restarted = 1; break;
case ROSE_DIAGNOSTIC: printk(KERN_WARNING "ROSE: received diagnostic #%d - %02X %02X %02X\n", skb->data[3], skb->data[4], skb->data[5], skb->data[6]); break;
default: printk(KERN_WARNING "ROSE: received unknown %02X with LCI 000\n", frametype); break; }
if (neigh->restarted) { while ((skbn = skb_dequeue(&neigh->queue)) != NULL) if (!rose_send_frame(skbn, neigh)) kfree_skb(skbn); } }
/* * This routine is called when a Restart Request is needed */ void rose_transmit_restart_request(struct rose_neigh *neigh) { struct sk_buff *skb; unsigned char *dptr; int len;
len = AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN + 3;
if ((skb = alloc_skb(len, GFP_ATOMIC)) == NULL) return;
skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN);
dptr = skb_put(skb, ROSE_MIN_LEN + 3);
*dptr++ = AX25_P_ROSE; *dptr++ = ROSE_GFI; *dptr++ = 0x00; *dptr++ = ROSE_RESTART_REQUEST; *dptr++ = ROSE_DTE_ORIGINATED; *dptr++ = 0;
if (!rose_send_frame(skb, neigh)) kfree_skb(skb); }
/* * This routine is called when a Restart Confirmation is needed */ void rose_transmit_restart_confirmation(struct rose_neigh *neigh) { struct sk_buff *skb; unsigned char *dptr; int len;
len = AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN + 1;
if ((skb = alloc_skb(len, GFP_ATOMIC)) == NULL) return;
skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN);
dptr = skb_put(skb, ROSE_MIN_LEN + 1);
*dptr++ = AX25_P_ROSE; *dptr++ = ROSE_GFI; *dptr++ = 0x00; *dptr++ = ROSE_RESTART_CONFIRMATION;
if (!rose_send_frame(skb, neigh)) kfree_skb(skb); }
/* * This routine is called when a Diagnostic is required. */ void rose_transmit_diagnostic(struct rose_neigh *neigh, unsigned char diag) { struct sk_buff *skb; unsigned char *dptr; int len;
len = AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN + 2;
if ((skb = alloc_skb(len, GFP_ATOMIC)) == NULL) return;
skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN);
dptr = skb_put(skb, ROSE_MIN_LEN + 2);
*dptr++ = AX25_P_ROSE; *dptr++ = ROSE_GFI; *dptr++ = 0x00; *dptr++ = ROSE_DIAGNOSTIC; *dptr++ = diag;
if (!rose_send_frame(skb, neigh)) kfree_skb(skb); }
/* * This routine is called when a Clear Request is needed outside of the context * of a connected socket. */ void rose_transmit_clear_request(struct rose_neigh *neigh, unsigned int lci, unsigned char cause, unsigned char diagnostic) { struct sk_buff *skb; unsigned char *dptr; int len; struct net_device *first; int faclen = 0;
len = AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN + 3;
first = rose_dev_first(); if (first) faclen = 6 + AX25_ADDR_LEN + 3 + ROSE_ADDR_LEN; if ((skb = alloc_skb(len + faclen, GFP_ATOMIC)) == NULL) return;
skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN);
dptr = skb_put(skb, ROSE_MIN_LEN + 3 + faclen);
*dptr++ = AX25_P_ROSE; *dptr++ = ((lci >> 8) & 0x0F) | ROSE_GFI; *dptr++ = ((lci >> 0) & 0xFF); *dptr++ = ROSE_CLEAR_REQUEST; *dptr++ = cause; *dptr++ = diagnostic;
if (first) { *dptr++ = 0x00; /* Address length */ *dptr++ = 4 + AX25_ADDR_LEN + 3 + ROSE_ADDR_LEN; /* Facilities length */ *dptr++ = 0; *dptr++ = FAC_NATIONAL; *dptr++ = FAC_NATIONAL_FAIL_CALL; *dptr++ = AX25_ADDR_LEN; memcpy(dptr, &rose_callsign, AX25_ADDR_LEN); dptr += AX25_ADDR_LEN; *dptr++ = FAC_NATIONAL_FAIL_ADD; *dptr++ = ROSE_ADDR_LEN + 1; *dptr++ = ROSE_ADDR_LEN * 2; memcpy(dptr, first->dev_addr, ROSE_ADDR_LEN); }
if (!rose_send_frame(skb, neigh)) kfree_skb(skb); }
void rose_transmit_link(struct sk_buff *skb, struct rose_neigh *neigh) { unsigned char *dptr;
#if 0 if (call_fw_firewall(PF_ROSE, skb->dev, skb->data, NULL, &skb) != FW_ACCEPT) { kfree_skb(skb); return; } #endif
if (neigh->loopback) { rose_loopback_queue(skb, neigh); return; }
if (!rose_link_up(neigh)) neigh->restarted = 0;
dptr = skb_push(skb, 1); *dptr++ = AX25_P_ROSE;
if (neigh->restarted) { if (!rose_send_frame(skb, neigh)) kfree_skb(skb); } else { skb_queue_tail(&neigh->queue, skb);
if (!rose_t0timer_running(neigh)) { rose_transmit_restart_request(neigh); neigh->dce_mode = 0; rose_start_t0timer(neigh); } } }
|