Viewing file: af_netlink.c (22.11 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * NETLINK Kernel-user communication protocol. * * Authors: Alan Cox <alan@redhat.com> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith * added netlink_proto_exit * */
#include <linux/config.h> #include <linux/module.h>
#include <linux/kernel.h> #include <linux/init.h> #include <linux/major.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/socket.h> #include <linux/un.h> #include <linux/fcntl.h> #include <linux/termios.h> #include <linux/sockios.h> #include <linux/net.h> #include <linux/fs.h> #include <linux/slab.h> #include <asm/uaccess.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/rtnetlink.h> #include <linux/proc_fs.h> #include <linux/smp_lock.h> #include <net/sock.h> #include <net/scm.h>
#define Nprintk(a...)
#if defined(CONFIG_NETLINK_DEV) || defined(CONFIG_NETLINK_DEV_MODULE) #define NL_EMULATE_DEV #endif
struct netlink_opt { u32 pid; unsigned groups; u32 dst_pid; unsigned dst_groups; unsigned long state; int (*handler)(int unit, struct sk_buff *skb); wait_queue_head_t wait; struct netlink_callback *cb; spinlock_t cb_lock; void (*data_ready)(struct sock *sk, int bytes); };
static struct sock *nl_table[MAX_LINKS]; static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
#ifdef NL_EMULATE_DEV static struct socket *netlink_kernel[MAX_LINKS]; #endif
static int netlink_dump(struct sock *sk); static void netlink_destroy_callback(struct netlink_callback *cb);
atomic_t netlink_sock_nr;
static rwlock_t nl_table_lock = RW_LOCK_UNLOCKED; static atomic_t nl_table_users = ATOMIC_INIT(0);
static void netlink_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->receive_queue);
if (!sk->dead) { printk("Freeing alive netlink socket %p\n", sk); return; } BUG_TRAP(atomic_read(&sk->rmem_alloc)==0); BUG_TRAP(atomic_read(&sk->wmem_alloc)==0); BUG_TRAP(sk->protinfo.af_netlink->cb==NULL);
kfree(sk->protinfo.af_netlink);
atomic_dec(&netlink_sock_nr); #ifdef NETLINK_REFCNT_DEBUG printk(KERN_DEBUG "NETLINK %p released, %d are still alive\n", sk, atomic_read(&netlink_sock_nr)); #endif }
/* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on SMP. * Look, when several writers sleep and reader wakes them up, all but one * immediately hit write lock and grab all the cpus. Exclusive sleep solves * this, _but_ remember, it adds useless work on UP machines. */
static void netlink_table_grab(void) { write_lock_bh(&nl_table_lock);
if (atomic_read(&nl_table_users)) { DECLARE_WAITQUEUE(wait, current);
add_wait_queue_exclusive(&nl_table_wait, &wait); for(;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (atomic_read(&nl_table_users) == 0) break; write_unlock_bh(&nl_table_lock); schedule(); write_lock_bh(&nl_table_lock); }
__set_current_state(TASK_RUNNING); remove_wait_queue(&nl_table_wait, &wait); } }
static __inline__ void netlink_table_ungrab(void) { write_unlock_bh(&nl_table_lock); wake_up(&nl_table_wait); }
static __inline__ void netlink_lock_table(void) { /* read_lock() synchronizes us to netlink_table_grab */
read_lock(&nl_table_lock); atomic_inc(&nl_table_users); read_unlock(&nl_table_lock); }
static __inline__ void netlink_unlock_table(void) { if (atomic_dec_and_test(&nl_table_users)) wake_up(&nl_table_wait); }
static __inline__ struct sock *netlink_lookup(int protocol, u32 pid) { struct sock *sk;
read_lock(&nl_table_lock); for (sk=nl_table[protocol]; sk; sk=sk->next) { if (sk->protinfo.af_netlink->pid == pid) { sock_hold(sk); read_unlock(&nl_table_lock); return sk; } }
read_unlock(&nl_table_lock); return NULL; }
extern struct proto_ops netlink_ops;
static int netlink_insert(struct sock *sk, u32 pid) { int err = -EADDRINUSE; struct sock *osk;
netlink_table_grab(); for (osk=nl_table[sk->protocol]; osk; osk=osk->next) { if (osk->protinfo.af_netlink->pid == pid) break; } if (osk == NULL) { err = -EBUSY; if (sk->protinfo.af_netlink->pid == 0) { sk->protinfo.af_netlink->pid = pid; sk->next = nl_table[sk->protocol]; nl_table[sk->protocol] = sk; sock_hold(sk); err = 0; } } netlink_table_ungrab(); return err; }
static void netlink_remove(struct sock *sk) { struct sock **skp;
netlink_table_grab(); for (skp = &nl_table[sk->protocol]; *skp; skp = &((*skp)->next)) { if (*skp == sk) { *skp = sk->next; __sock_put(sk); break; } } netlink_table_ungrab(); }
static int netlink_create(struct socket *sock, int protocol) { struct sock *sk;
sock->state = SS_UNCONNECTED;
if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) return -ESOCKTNOSUPPORT;
if (protocol<0 || protocol >= MAX_LINKS) return -EPROTONOSUPPORT;
sock->ops = &netlink_ops;
sk = sk_alloc(PF_NETLINK, GFP_KERNEL, 1); if (!sk) return -ENOMEM;
sock_init_data(sock,sk);
sk->protinfo.af_netlink = kmalloc(sizeof(struct netlink_opt), GFP_KERNEL); if (sk->protinfo.af_netlink == NULL) { sk_free(sk); return -ENOMEM; } memset(sk->protinfo.af_netlink, 0, sizeof(struct netlink_opt));
spin_lock_init(&sk->protinfo.af_netlink->cb_lock); init_waitqueue_head(&sk->protinfo.af_netlink->wait); sk->destruct = netlink_sock_destruct; atomic_inc(&netlink_sock_nr);
sk->protocol=protocol; return 0; }
static int netlink_release(struct socket *sock) { struct sock *sk = sock->sk;
if (!sk) return 0;
netlink_remove(sk);
spin_lock(&sk->protinfo.af_netlink->cb_lock); if (sk->protinfo.af_netlink->cb) { sk->protinfo.af_netlink->cb->done(sk->protinfo.af_netlink->cb); netlink_destroy_callback(sk->protinfo.af_netlink->cb); sk->protinfo.af_netlink->cb = NULL; __sock_put(sk); } spin_unlock(&sk->protinfo.af_netlink->cb_lock);
/* OK. Socket is unlinked, and, therefore, no new packets will arrive */
sock_orphan(sk); sock->sk = NULL; wake_up_interruptible_all(&sk->protinfo.af_netlink->wait);
skb_queue_purge(&sk->write_queue);
sock_put(sk); return 0; }
static int netlink_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct sock *osk; s32 pid = current->pid; int err;
retry: netlink_table_grab(); for (osk=nl_table[sk->protocol]; osk; osk=osk->next) { if (osk->protinfo.af_netlink->pid == pid) { /* Bind collision, search negative pid values. */ if (pid > 0) pid = -4096; pid--; netlink_table_ungrab(); goto retry; } } netlink_table_ungrab();
err = netlink_insert(sk, pid); if (err == -EADDRINUSE) goto retry; sk->protinfo.af_netlink->groups = 0; return 0; }
static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sock *sk = sock->sk; int err; struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr; if (nladdr->nl_family != AF_NETLINK) return -EINVAL;
/* Only superuser is allowed to listen multicasts */ if (nladdr->nl_groups && !capable(CAP_NET_ADMIN)) return -EPERM;
if (sk->protinfo.af_netlink->pid) { if (nladdr->nl_pid != sk->protinfo.af_netlink->pid) return -EINVAL; sk->protinfo.af_netlink->groups = nladdr->nl_groups; return 0; }
if (nladdr->nl_pid == 0) { err = netlink_autobind(sock); if (err == 0) sk->protinfo.af_netlink->groups = nladdr->nl_groups; return err; }
err = netlink_insert(sk, nladdr->nl_pid); if (err == 0) sk->protinfo.af_netlink->groups = nladdr->nl_groups; return err; }
static int netlink_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { int err = 0; struct sock *sk = sock->sk; struct sockaddr_nl *nladdr=(struct sockaddr_nl*)addr;
if (addr->sa_family == AF_UNSPEC) { sk->protinfo.af_netlink->dst_pid = 0; sk->protinfo.af_netlink->dst_groups = 0; return 0; } if (addr->sa_family != AF_NETLINK) return -EINVAL;
/* Only superuser is allowed to send multicasts */ if (nladdr->nl_groups && !capable(CAP_NET_ADMIN)) return -EPERM;
if (!sk->protinfo.af_netlink->pid) err = netlink_autobind(sock);
if (err == 0) { sk->protinfo.af_netlink->dst_pid = nladdr->nl_pid; sk->protinfo.af_netlink->dst_groups = nladdr->nl_groups; }
return 0; }
static int netlink_getname(struct socket *sock, struct sockaddr *addr, int *addr_len, int peer) { struct sock *sk = sock->sk; struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr; nladdr->nl_family = AF_NETLINK; *addr_len = sizeof(*nladdr);
if (peer) { nladdr->nl_pid = sk->protinfo.af_netlink->dst_pid; nladdr->nl_groups = sk->protinfo.af_netlink->dst_groups; } else { nladdr->nl_pid = sk->protinfo.af_netlink->pid; nladdr->nl_groups = sk->protinfo.af_netlink->groups; } return 0; }
static void netlink_overrun(struct sock *sk) { if (!test_and_set_bit(0, &sk->protinfo.af_netlink->state)) { sk->err = ENOBUFS; sk->error_report(sk); } }
int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 pid, int nonblock) { struct sock *sk; int len = skb->len; int protocol = ssk->protocol; long timeo; DECLARE_WAITQUEUE(wait, current);
timeo = sock_sndtimeo(ssk, nonblock);
retry: sk = netlink_lookup(protocol, pid); if (sk == NULL) goto no_dst;
#ifdef NL_EMULATE_DEV if (sk->protinfo.af_netlink->handler) { skb_orphan(skb); len = sk->protinfo.af_netlink->handler(protocol, skb); sock_put(sk); return len; } #endif
if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf || test_bit(0, &sk->protinfo.af_netlink->state)) { if (!timeo) { if (ssk->protinfo.af_netlink->pid == 0) netlink_overrun(sk); sock_put(sk); kfree_skb(skb); return -EAGAIN; }
__set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&sk->protinfo.af_netlink->wait, &wait);
if ((atomic_read(&sk->rmem_alloc) > sk->rcvbuf || test_bit(0, &sk->protinfo.af_netlink->state)) && !sk->dead) timeo = schedule_timeout(timeo);
__set_current_state(TASK_RUNNING); remove_wait_queue(&sk->protinfo.af_netlink->wait, &wait); sock_put(sk);
if (signal_pending(current)) { kfree_skb(skb); return sock_intr_errno(timeo); } goto retry; }
skb_orphan(skb); skb_set_owner_r(skb, sk); skb_queue_tail(&sk->receive_queue, skb); sk->data_ready(sk, len); sock_put(sk); return len;
no_dst: kfree_skb(skb); return -ECONNREFUSED; }
static __inline__ int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) { #ifdef NL_EMULATE_DEV if (sk->protinfo.af_netlink->handler) { skb_orphan(skb); sk->protinfo.af_netlink->handler(sk->protocol, skb); return 0; } else #endif if (atomic_read(&sk->rmem_alloc) <= sk->rcvbuf && !test_bit(0, &sk->protinfo.af_netlink->state)) { skb_orphan(skb); skb_set_owner_r(skb, sk); skb_queue_tail(&sk->receive_queue, skb); sk->data_ready(sk, skb->len); return 0; } return -1; }
void netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid, u32 group, int allocation) { struct sock *sk; struct sk_buff *skb2 = NULL; int protocol = ssk->protocol; int failure = 0;
/* While we sleep in clone, do not allow to change socket list */
netlink_lock_table();
for (sk = nl_table[protocol]; sk; sk = sk->next) { if (ssk == sk) continue;
if (sk->protinfo.af_netlink->pid == pid || !(sk->protinfo.af_netlink->groups&group)) continue;
if (failure) { netlink_overrun(sk); continue; }
sock_hold(sk); if (skb2 == NULL) { if (atomic_read(&skb->users) != 1) { skb2 = skb_clone(skb, allocation); } else { skb2 = skb; atomic_inc(&skb->users); } } if (skb2 == NULL) { netlink_overrun(sk); /* Clone failed. Notify ALL listeners. */ failure = 1; } else if (netlink_broadcast_deliver(sk, skb2)) { netlink_overrun(sk); } else skb2 = NULL; sock_put(sk); }
netlink_unlock_table();
if (skb2) kfree_skb(skb2); kfree_skb(skb); }
void netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code) { struct sock *sk; int protocol = ssk->protocol;
read_lock(&nl_table_lock); for (sk = nl_table[protocol]; sk; sk = sk->next) { if (ssk == sk) continue;
if (sk->protinfo.af_netlink->pid == pid || !(sk->protinfo.af_netlink->groups&group)) continue;
sk->err = code; sk->error_report(sk); } read_unlock(&nl_table_lock); }
static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, int len, struct scm_cookie *scm) { struct sock *sk = sock->sk; struct sockaddr_nl *addr=msg->msg_name; u32 dst_pid; u32 dst_groups; struct sk_buff *skb; int err;
if (msg->msg_flags&MSG_OOB) return -EOPNOTSUPP;
if (msg->msg_namelen) { if (addr->nl_family != AF_NETLINK) return -EINVAL; dst_pid = addr->nl_pid; dst_groups = addr->nl_groups; if (dst_groups && !capable(CAP_NET_ADMIN)) return -EPERM; } else { dst_pid = sk->protinfo.af_netlink->dst_pid; dst_groups = sk->protinfo.af_netlink->dst_groups; }
if (!sk->protinfo.af_netlink->pid) { err = netlink_autobind(sock); if (err) goto out; }
err = -EMSGSIZE; if ((unsigned)len > sk->sndbuf-32) goto out; err = -ENOBUFS; skb = alloc_skb(len, GFP_KERNEL); if (skb==NULL) goto out;
NETLINK_CB(skb).pid = sk->protinfo.af_netlink->pid; NETLINK_CB(skb).groups = sk->protinfo.af_netlink->groups; NETLINK_CB(skb).dst_pid = dst_pid; NETLINK_CB(skb).dst_groups = dst_groups; memcpy(NETLINK_CREDS(skb), &scm->creds, sizeof(struct ucred));
/* What can I do? Netlink is asynchronous, so that we will have to save current capabilities to check them, when this message will be delivered to corresponding kernel module. --ANK (980802) */ NETLINK_CB(skb).eff_cap = current->cap_effective;
err = -EFAULT; if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) { kfree_skb(skb); goto out; }
if (dst_groups) { atomic_inc(&skb->users); netlink_broadcast(sk, skb, dst_pid, dst_groups, GFP_KERNEL); } err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
out: return err; }
static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, int len, int flags, struct scm_cookie *scm) { struct sock *sk = sock->sk; int noblock = flags&MSG_DONTWAIT; int copied; struct sk_buff *skb; int err;
if (flags&MSG_OOB) return -EOPNOTSUPP;
copied = 0;
skb = skb_recv_datagram(sk,flags,noblock,&err); if (skb==NULL) goto out;
msg->msg_namelen = 0;
copied = skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; }
skb->h.raw = skb->data; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
if (msg->msg_name) { struct sockaddr_nl *addr = (struct sockaddr_nl*)msg->msg_name; addr->nl_family = AF_NETLINK; addr->nl_pid = NETLINK_CB(skb).pid; addr->nl_groups = NETLINK_CB(skb).dst_groups; msg->msg_namelen = sizeof(*addr); }
scm->creds = *NETLINK_CREDS(skb); skb_free_datagram(sk, skb);
if (sk->protinfo.af_netlink->cb && atomic_read(&sk->rmem_alloc) <= sk->rcvbuf/2) netlink_dump(sk);
out: if (skb_queue_len(&sk->receive_queue) <= sk->rcvbuf/2) { if (skb_queue_len(&sk->receive_queue) == 0) clear_bit(0, &sk->protinfo.af_netlink->state); if (!test_bit(0, &sk->protinfo.af_netlink->state)) wake_up_interruptible(&sk->protinfo.af_netlink->wait); } return err ? : copied; }
void netlink_data_ready(struct sock *sk, int len) { if (sk->protinfo.af_netlink->data_ready) sk->protinfo.af_netlink->data_ready(sk, len);
if (skb_queue_len(&sk->receive_queue) <= sk->rcvbuf/2) { if (skb_queue_len(&sk->receive_queue) == 0) clear_bit(0, &sk->protinfo.af_netlink->state); if (!test_bit(0, &sk->protinfo.af_netlink->state)) wake_up_interruptible(&sk->protinfo.af_netlink->wait); } }
/* * We export these functions to other modules. They provide a * complete set of kernel non-blocking support for message * queueing. */
struct sock * netlink_kernel_create(int unit, void (*input)(struct sock *sk, int len)) { struct socket *sock; struct sock *sk;
if (unit<0 || unit>=MAX_LINKS) return NULL;
if (!(sock = sock_alloc())) return NULL;
sock->type = SOCK_RAW;
if (netlink_create(sock, unit) < 0) { sock_release(sock); return NULL; } sk = sock->sk; sk->data_ready = netlink_data_ready; if (input) sk->protinfo.af_netlink->data_ready = input;
netlink_insert(sk, 0); return sk; }
static void netlink_destroy_callback(struct netlink_callback *cb) { if (cb->skb) kfree_skb(cb->skb); kfree(cb); }
/* * It looks a bit ugly. * It would be better to create kernel thread. */
static int netlink_dump(struct sock *sk) { struct netlink_callback *cb; struct sk_buff *skb; struct nlmsghdr *nlh; int len; skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL); if (!skb) return -ENOBUFS;
spin_lock(&sk->protinfo.af_netlink->cb_lock);
cb = sk->protinfo.af_netlink->cb; if (cb == NULL) { spin_unlock(&sk->protinfo.af_netlink->cb_lock); kfree_skb(skb); return -EINVAL; }
len = cb->dump(skb, cb);
if (len > 0) { spin_unlock(&sk->protinfo.af_netlink->cb_lock); skb_queue_tail(&sk->receive_queue, skb); sk->data_ready(sk, len); return 0; }
nlh = __nlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, NLMSG_DONE, sizeof(int)); nlh->nlmsg_flags |= NLM_F_MULTI; memcpy(NLMSG_DATA(nlh), &len, sizeof(len)); skb_queue_tail(&sk->receive_queue, skb); sk->data_ready(sk, skb->len);
cb->done(cb); sk->protinfo.af_netlink->cb = NULL; spin_unlock(&sk->protinfo.af_netlink->cb_lock);
netlink_destroy_callback(cb); sock_put(sk); return 0; }
int netlink_dump_start(struct sock *ssk, struct sk_buff *skb, struct nlmsghdr *nlh, int (*dump)(struct sk_buff *skb, struct netlink_callback*), int (*done)(struct netlink_callback*)) { struct netlink_callback *cb; struct sock *sk;
cb = kmalloc(sizeof(*cb), GFP_KERNEL); if (cb == NULL) return -ENOBUFS;
memset(cb, 0, sizeof(*cb)); cb->dump = dump; cb->done = done; cb->nlh = nlh; atomic_inc(&skb->users); cb->skb = skb;
sk = netlink_lookup(ssk->protocol, NETLINK_CB(skb).pid); if (sk == NULL) { netlink_destroy_callback(cb); return -ECONNREFUSED; } /* A dump is in progress... */ spin_lock(&sk->protinfo.af_netlink->cb_lock); if (sk->protinfo.af_netlink->cb) { spin_unlock(&sk->protinfo.af_netlink->cb_lock); netlink_destroy_callback(cb); sock_put(sk); return -EBUSY; } sk->protinfo.af_netlink->cb = cb; spin_unlock(&sk->protinfo.af_netlink->cb_lock);
netlink_dump(sk); return 0; }
void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) { struct sk_buff *skb; struct nlmsghdr *rep; struct nlmsgerr *errmsg; int size;
if (err == 0) size = NLMSG_SPACE(sizeof(struct nlmsgerr)); else size = NLMSG_SPACE(4 + NLMSG_ALIGN(nlh->nlmsg_len));
skb = alloc_skb(size, GFP_KERNEL); if (!skb) return;
rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq, NLMSG_ERROR, sizeof(struct nlmsgerr)); errmsg = NLMSG_DATA(rep); errmsg->error = err; memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(struct nlmsghdr)); netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT); }
#ifdef NL_EMULATE_DEV
static rwlock_t nl_emu_lock = RW_LOCK_UNLOCKED;
/* * Backward compatibility. */ int netlink_attach(int unit, int (*function)(int, struct sk_buff *skb)) { struct sock *sk = netlink_kernel_create(unit, NULL); if (sk == NULL) return -ENOBUFS; sk->protinfo.af_netlink->handler = function; write_lock_bh(&nl_emu_lock); netlink_kernel[unit] = sk->socket; write_unlock_bh(&nl_emu_lock); return 0; }
void netlink_detach(int unit) { struct socket *sock;
write_lock_bh(&nl_emu_lock); sock = netlink_kernel[unit]; netlink_kernel[unit] = NULL; write_unlock_bh(&nl_emu_lock);
sock_release(sock); }
int netlink_post(int unit, struct sk_buff *skb) { struct socket *sock;
read_lock(&nl_emu_lock); sock = netlink_kernel[unit]; if (sock) { struct sock *sk = sock->sk; memset(skb->cb, 0, sizeof(skb->cb)); sock_hold(sk); read_unlock(&nl_emu_lock);
netlink_broadcast(sk, skb, 0, ~0, GFP_ATOMIC);
sock_put(sk); return 0; } read_unlock(&nl_emu_lock); return -EUNATCH; }
#endif
#ifdef CONFIG_PROC_FS static int netlink_read_proc(char *buffer, char **start, off_t offset, int length, int *eof, void *data) { off_t pos=0; off_t begin=0; int len=0; int i; struct sock *s; len+= sprintf(buffer,"sk Eth Pid Groups " "Rmem Wmem Dump Locks\n"); for (i=0; i<MAX_LINKS; i++) { read_lock(&nl_table_lock); for (s = nl_table[i]; s; s = s->next) { len+=sprintf(buffer+len,"%p %-3d %-6d %08x %-8d %-8d %p %d", s, s->protocol, s->protinfo.af_netlink->pid, s->protinfo.af_netlink->groups, atomic_read(&s->rmem_alloc), atomic_read(&s->wmem_alloc), s->protinfo.af_netlink->cb, atomic_read(&s->refcnt) );
buffer[len++]='\n'; pos=begin+len; if(pos<offset) { len=0; begin=pos; } if(pos>offset+length) { read_unlock(&nl_table_lock); goto done; } } read_unlock(&nl_table_lock); } *eof = 1;
done: *start=buffer+(offset-begin); len-=(offset-begin); if(len>length) len=length; if(len<0) len=0; return len; } #endif
struct proto_ops netlink_ops = { family: PF_NETLINK,
release: netlink_release, bind: netlink_bind, connect: netlink_connect, socketpair: sock_no_socketpair, accept: sock_no_accept, getname: netlink_getname, poll: datagram_poll, ioctl: sock_no_ioctl, listen: sock_no_listen, shutdown: sock_no_shutdown, setsockopt: sock_no_setsockopt, getsockopt: sock_no_getsockopt, sendmsg: netlink_sendmsg, recvmsg: netlink_recvmsg, mmap: sock_no_mmap, sendpage: sock_no_sendpage, };
struct net_proto_family netlink_family_ops = { PF_NETLINK, netlink_create };
static int __init netlink_proto_init(void) { struct sk_buff *dummy_skb;
if (sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb)) { printk(KERN_CRIT "netlink_init: panic\n"); return -1; } sock_register(&netlink_family_ops); #ifdef CONFIG_PROC_FS create_proc_read_entry("net/netlink", 0, 0, netlink_read_proc, NULL); #endif return 0; }
static void __exit netlink_proto_exit(void) { sock_unregister(PF_NETLINK); remove_proc_entry("net/netlink", NULL); }
module_init(netlink_proto_init); module_exit(netlink_proto_exit);
|