Viewing file: ip6_fib.c (23.54 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Linux INET6 implementation * Forwarding Information Database * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */
#include <linux/config.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/net.h> #include <linux/route.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/init.h>
#ifdef CONFIG_PROC_FS #include <linux/proc_fs.h> #endif
#include <net/ipv6.h> #include <net/ndisc.h> #include <net/addrconf.h>
#include <net/ip6_fib.h> #include <net/ip6_route.h>
#define RT6_DEBUG 2 #undef CONFIG_IPV6_SUBTREES
#if RT6_DEBUG >= 3 #define RT6_TRACE(x...) printk(KERN_DEBUG x) #else #define RT6_TRACE(x...) do { ; } while (0) #endif
struct rt6_statistics rt6_stats;
static kmem_cache_t * fib6_node_kmem;
enum fib_walk_state_t { #ifdef CONFIG_IPV6_SUBTREES FWS_S, #endif FWS_L, FWS_R, FWS_C, FWS_U };
struct fib6_cleaner_t { struct fib6_walker_t w; int (*func)(struct rt6_info *, void *arg); void *arg; };
rwlock_t fib6_walker_lock = RW_LOCK_UNLOCKED;
#ifdef CONFIG_IPV6_SUBTREES #define FWS_INIT FWS_S #define SUBTREE(fn) ((fn)->subtree) #else #define FWS_INIT FWS_L #define SUBTREE(fn) NULL #endif
static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt); static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
/* * A routing update causes an increase of the serial number on the * afected subtree. This allows for cached routes to be asynchronously * tested when modifications are made to the destination cache as a * result of redirects, path MTU changes, etc. */
static __u32 rt_sernum = 0;
static struct timer_list ip6_fib_timer = { function: fib6_run_gc };
static struct fib6_walker_t fib6_walker_list = { &fib6_walker_list, &fib6_walker_list, };
#define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
static __inline__ u32 fib6_new_sernum(void) { u32 n = ++rt_sernum; if ((__s32)n <= 0) rt_sernum = n = 1; return n; }
/* * Auxiliary address test functions for the radix tree. * * These assume a 32bit processor (although it will work on * 64bit processors) */
/* * compare "prefix length" bits of an address */
static __inline__ int addr_match(void *token1, void *token2, int prefixlen) { __u32 *a1 = token1; __u32 *a2 = token2; int pdw; int pbi;
pdw = prefixlen >> 5; /* num of whole __u32 in prefix */ pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */
if (pdw) if (memcmp(a1, a2, pdw << 2)) return 0;
if (pbi) { __u32 mask;
mask = htonl((0xffffffff) << (32 - pbi));
if ((a1[pdw] ^ a2[pdw]) & mask) return 0; }
return 1; }
/* * test bit */
static __inline__ int addr_bit_set(void *token, int fn_bit) { __u32 *addr = token;
return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5]; }
/* * find the first different bit between two addresses * length of address must be a multiple of 32bits */
static __inline__ int addr_diff(void *token1, void *token2, int addrlen) { __u32 *a1 = token1; __u32 *a2 = token2; int i;
addrlen >>= 2;
for (i = 0; i < addrlen; i++) { __u32 xb;
xb = a1[i] ^ a2[i];
if (xb) { int j = 31;
xb = ntohl(xb);
while ((xb & (1 << j)) == 0) j--;
return (i * 32 + 31 - j); } }
/* * we should *never* get to this point since that * would mean the addrs are equal * * However, we do get to it 8) And exacly, when * addresses are equal 8) * * ip route add 1111::/128 via ... * ip route add 1111::/64 via ... * and we are here. * * Ideally, this function should stop comparison * at prefix length. It does not, but it is still OK, * if returned value is greater than prefix length. * --ANK (980803) */
return addrlen<<5; }
static __inline__ struct fib6_node * node_alloc(void) { struct fib6_node *fn;
if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL) memset(fn, 0, sizeof(struct fib6_node));
return fn; }
static __inline__ void node_free(struct fib6_node * fn) { kmem_cache_free(fib6_node_kmem, fn); }
static __inline__ void rt6_release(struct rt6_info *rt) { if (atomic_dec_and_test(&rt->rt6i_ref)) dst_free(&rt->u.dst); }
/* * Routing Table * * return the apropriate node for a routing tree "add" operation * by either creating and inserting or by returning an existing * node. */
static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr, int addrlen, int plen, int offset) { struct fib6_node *fn, *in, *ln; struct fib6_node *pn = NULL; struct rt6key *key; int bit; int dir = 0; __u32 sernum = fib6_new_sernum();
RT6_TRACE("fib6_add_1\n");
/* insert node in tree */
fn = root;
if (plen == 0) return fn;
do { key = (struct rt6key *)((u8 *)fn->leaf + offset);
/* * Prefix match */ if (plen < fn->fn_bit || !addr_match(&key->addr, addr, fn->fn_bit)) goto insert_above; /* * Exact match ? */ if (plen == fn->fn_bit) { /* clean up an intermediate node */ if ((fn->fn_flags & RTN_RTINFO) == 0) { rt6_release(fn->leaf); fn->leaf = NULL; } fn->fn_sernum = sernum; return fn; }
/* * We have more bits to go */ /* Try to walk down on tree. */ fn->fn_sernum = sernum; dir = addr_bit_set(addr, fn->fn_bit); pn = fn; fn = dir ? fn->right: fn->left; } while (fn);
/* * We walked to the bottom of tree. * Create new leaf node without children. */
ln = node_alloc();
if (ln == NULL) return NULL; ln->fn_bit = plen; ln->parent = pn; ln->fn_sernum = sernum;
if (dir) pn->right = ln; else pn->left = ln;
return ln;
insert_above: /* * split since we don't have a common prefix anymore or * we have a less significant route. * we've to insert an intermediate node on the list * this new node will point to the one we need to create * and the current */
pn = fn->parent;
/* find 1st bit in difference between the 2 addrs.
See comment in addr_diff: bit may be an invalid value, but if it is >= plen, the value is ignored in any case. */ bit = addr_diff(addr, &key->addr, addrlen);
/* * (intermediate)[in] * / \ * (new leaf node)[ln] (old node)[fn] */ if (plen > bit) { in = node_alloc(); ln = node_alloc(); if (in == NULL || ln == NULL) { if (in) node_free(in); if (ln) node_free(ln); return NULL; }
/* * new intermediate node. * RTN_RTINFO will * be off since that an address that chooses one of * the branches would not match less specific routes * in the other branch */
in->fn_bit = bit;
in->parent = pn; in->leaf = fn->leaf; atomic_inc(&in->leaf->rt6i_ref);
in->fn_sernum = sernum;
/* update parent pointer */ if (dir) pn->right = in; else pn->left = in;
ln->fn_bit = plen;
ln->parent = in; fn->parent = in;
ln->fn_sernum = sernum;
if (addr_bit_set(addr, bit)) { in->right = ln; in->left = fn; } else { in->left = ln; in->right = fn; } } else { /* plen <= bit */
/* * (new leaf node)[ln] * / \ * (old node)[fn] NULL */
ln = node_alloc();
if (ln == NULL) return NULL;
ln->fn_bit = plen;
ln->parent = pn;
ln->fn_sernum = sernum; if (dir) pn->right = ln; else pn->left = ln;
if (addr_bit_set(&key->addr, plen)) ln->right = fn; else ln->left = fn;
fn->parent = ln; } return ln; }
/* * Insert routing information in a node. */
static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt) { struct rt6_info *iter = NULL; struct rt6_info **ins;
ins = &fn->leaf;
for (iter = fn->leaf; iter; iter=iter->u.next) { /* * Search for duplicates */
if (iter->rt6i_metric == rt->rt6i_metric) { /* * Same priority level */
if ((iter->rt6i_dev == rt->rt6i_dev) && (iter->rt6i_flowr == rt->rt6i_flowr) && (ipv6_addr_cmp(&iter->rt6i_gateway, &rt->rt6i_gateway) == 0)) { if (!(iter->rt6i_flags&RTF_EXPIRES)) return -EEXIST; iter->rt6i_expires = rt->rt6i_expires; if (!(rt->rt6i_flags&RTF_EXPIRES)) { iter->rt6i_flags &= ~RTF_EXPIRES; iter->rt6i_expires = 0; } return -EEXIST; } }
if (iter->rt6i_metric > rt->rt6i_metric) break;
ins = &iter->u.next; }
/* * insert node */
rt->u.next = iter; *ins = rt; rt->rt6i_node = fn; atomic_inc(&rt->rt6i_ref); inet6_rt_notify(RTM_NEWROUTE, rt); rt6_stats.fib_rt_entries++;
if ((fn->fn_flags & RTN_RTINFO) == 0) { rt6_stats.fib_route_nodes++; fn->fn_flags |= RTN_RTINFO; }
return 0; }
static __inline__ void fib6_start_gc(struct rt6_info *rt) { if (ip6_fib_timer.expires == 0 && (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE))) mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval); }
/* * Add routing information to the routing tree. * <destination addr>/<source addr> * with source addr info in sub-trees */
int fib6_add(struct fib6_node *root, struct rt6_info *rt) { struct fib6_node *fn; int err = -ENOMEM;
fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr), rt->rt6i_dst.plen, (u8*) &rt->rt6i_dst - (u8*) rt);
if (fn == NULL) goto out;
#ifdef CONFIG_IPV6_SUBTREES if (rt->rt6i_src.plen) { struct fib6_node *sn;
if (fn->subtree == NULL) { struct fib6_node *sfn;
/* * Create subtree. * * fn[main tree] * | * sfn[subtree root] * \ * sn[new leaf node] */
/* Create subtree root node */ sfn = node_alloc(); if (sfn == NULL) goto st_failure;
sfn->leaf = &ip6_null_entry; atomic_inc(&ip6_null_entry.rt6i_ref); sfn->fn_flags = RTN_ROOT; sfn->fn_sernum = fib6_new_sernum();
/* Now add the first leaf node to new subtree */
sn = fib6_add_1(sfn, &rt->rt6i_src.addr, sizeof(struct in6_addr), rt->rt6i_src.plen, (u8*) &rt->rt6i_src - (u8*) rt);
if (sn == NULL) { /* If it is failed, discard just allocated root, and then (in st_failure) stale node in main tree. */ node_free(sfn); goto st_failure; }
/* Now link new subtree to main tree */ sfn->parent = fn; fn->subtree = sfn; if (fn->leaf == NULL) { fn->leaf = rt; atomic_inc(&rt->rt6i_ref); } } else { sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, sizeof(struct in6_addr), rt->rt6i_src.plen, (u8*) &rt->rt6i_src - (u8*) rt);
if (sn == NULL) goto st_failure; }
fn = sn; } #endif
err = fib6_add_rt2node(fn, rt);
if (err == 0) { fib6_start_gc(rt); if (!(rt->rt6i_flags&RTF_CACHE)) fib6_prune_clones(fn, rt); }
out: if (err) dst_free(&rt->u.dst); return err;
#ifdef CONFIG_IPV6_SUBTREES /* Subtree creation failed, probably main tree node is orphan. If it is, shot it. */ st_failure: if (fn && !(fn->fn_flags&RTN_RTINFO|RTN_ROOT)) fib_repair_tree(fn); dst_free(&rt->u.dst); return err; #endif }
/* * Routing tree lookup * */
struct lookup_args { int offset; /* key offset on rt6_info */ struct in6_addr *addr; /* search key */ };
static struct fib6_node * fib6_lookup_1(struct fib6_node *root, struct lookup_args *args) { struct fib6_node *fn; int dir;
/* * Descend on a tree */
fn = root;
for (;;) { struct fib6_node *next;
dir = addr_bit_set(args->addr, fn->fn_bit);
next = dir ? fn->right : fn->left;
if (next) { fn = next; continue; }
break; }
while ((fn->fn_flags & RTN_ROOT) == 0) { #ifdef CONFIG_IPV6_SUBTREES if (fn->subtree) { struct fib6_node *st; struct lookup_args *narg;
narg = args + 1;
if (narg->addr) { st = fib6_lookup_1(fn->subtree, narg);
if (st && !(st->fn_flags & RTN_ROOT)) return st; } } #endif
if (fn->fn_flags & RTN_RTINFO) { struct rt6key *key;
key = (struct rt6key *) ((u8 *) fn->leaf + args->offset);
if (addr_match(&key->addr, args->addr, key->plen)) return fn; }
fn = fn->parent; }
return NULL; }
struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr, struct in6_addr *saddr) { struct lookup_args args[2]; struct rt6_info *rt = NULL; struct fib6_node *fn;
args[0].offset = (u8*) &rt->rt6i_dst - (u8*) rt; args[0].addr = daddr;
#ifdef CONFIG_IPV6_SUBTREES args[1].offset = (u8*) &rt->rt6i_src - (u8*) rt; args[1].addr = saddr; #endif
fn = fib6_lookup_1(root, args);
if (fn == NULL) fn = root;
return fn; }
/* * Get node with sepciafied destination prefix (and source prefix, * if subtrees are used) */
static struct fib6_node * fib6_locate_1(struct fib6_node *root, struct in6_addr *addr, int plen, int offset) { struct fib6_node *fn;
for (fn = root; fn ; ) { struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
/* * Prefix match */ if (plen < fn->fn_bit || !addr_match(&key->addr, addr, fn->fn_bit)) return NULL;
if (plen == fn->fn_bit) return fn;
/* * We have more bits to go */ if (addr_bit_set(addr, fn->fn_bit)) fn = fn->right; else fn = fn->left; } return NULL; }
struct fib6_node * fib6_locate(struct fib6_node *root, struct in6_addr *daddr, int dst_len, struct in6_addr *saddr, int src_len) { struct rt6_info *rt = NULL; struct fib6_node *fn;
fn = fib6_locate_1(root, daddr, dst_len, (u8*) &rt->rt6i_dst - (u8*) rt);
#ifdef CONFIG_IPV6_SUBTREES if (src_len) { BUG_TRAP(saddr!=NULL); if (fn == NULL) fn = fn->subtree; if (fn) fn = fib6_locate_1(fn, saddr, src_len, (u8*) &rt->rt6i_src - (u8*) rt); } #endif
if (fn && fn->fn_flags&RTN_RTINFO) return fn;
return NULL; }
/* * Deletion * */
static struct rt6_info * fib6_find_prefix(struct fib6_node *fn) { if (fn->fn_flags&RTN_ROOT) return &ip6_null_entry;
while(fn) { if(fn->left) return fn->left->leaf;
if(fn->right) return fn->right->leaf;
fn = SUBTREE(fn); } return NULL; }
/* * Called to trim the tree of intermediate nodes when possible. "fn" * is the node we want to try and remove. */
static struct fib6_node * fib6_repair_tree(struct fib6_node *fn) { int children; int nstate; struct fib6_node *child, *pn; struct fib6_walker_t *w; int iter = 0;
for (;;) { RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); iter++;
BUG_TRAP(!(fn->fn_flags&RTN_RTINFO)); BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT)); BUG_TRAP(fn->leaf==NULL);
children = 0; child = NULL; if (fn->right) child = fn->right, children |= 1; if (fn->left) child = fn->left, children |= 2;
if (children == 3 || SUBTREE(fn) #ifdef CONFIG_IPV6_SUBTREES /* Subtree root (i.e. fn) may have one child */ || (children && fn->fn_flags&RTN_ROOT) #endif ) { fn->leaf = fib6_find_prefix(fn); #if RT6_DEBUG >= 2 if (fn->leaf==NULL) { BUG_TRAP(fn->leaf); fn->leaf = &ip6_null_entry; } #endif atomic_inc(&fn->leaf->rt6i_ref); return fn->parent; }
pn = fn->parent; #ifdef CONFIG_IPV6_SUBTREES if (SUBTREE(pn) == fn) { BUG_TRAP(fn->fn_flags&RTN_ROOT); SUBTREE(pn) = NULL; nstate = FWS_L; } else { BUG_TRAP(!(fn->fn_flags&RTN_ROOT)); #endif if (pn->right == fn) pn->right = child; else if (pn->left == fn) pn->left = child; #if RT6_DEBUG >= 2 else BUG_TRAP(0); #endif if (child) child->parent = pn; nstate = FWS_R; #ifdef CONFIG_IPV6_SUBTREES } #endif
read_lock(&fib6_walker_lock); FOR_WALKERS(w) { if (child == NULL) { if (w->root == fn) { w->root = w->node = NULL; RT6_TRACE("W %p adjusted by delroot 1\n", w); } else if (w->node == fn) { RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); w->node = pn; w->state = nstate; } } else { if (w->root == fn) { w->root = child; RT6_TRACE("W %p adjusted by delroot 2\n", w); } if (w->node == fn) { w->node = child; if (children&2) { RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); w->state = w->state>=FWS_R ? FWS_U : FWS_INIT; } else { RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); w->state = w->state>=FWS_C ? FWS_U : FWS_INIT; } } } } read_unlock(&fib6_walker_lock);
node_free(fn); if (pn->fn_flags&RTN_RTINFO || SUBTREE(pn)) return pn;
rt6_release(pn->leaf); pn->leaf = NULL; fn = pn; } }
static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp) { struct fib6_walker_t *w; struct rt6_info *rt = *rtp;
RT6_TRACE("fib6_del_route\n");
/* Unlink it */ *rtp = rt->u.next; rt->rt6i_node = NULL; rt6_stats.fib_rt_entries--;
/* Adjust walkers */ read_lock(&fib6_walker_lock); FOR_WALKERS(w) { if (w->state == FWS_C && w->leaf == rt) { RT6_TRACE("walker %p adjusted by delroute\n", w); w->leaf = rt->u.next; if (w->leaf == NULL) w->state = FWS_U; } } read_unlock(&fib6_walker_lock);
rt->u.next = NULL;
/* If it was last route, expunge its radix tree node */ if (fn->leaf == NULL) { fn->fn_flags &= ~RTN_RTINFO; rt6_stats.fib_route_nodes--; fn = fib6_repair_tree(fn); }
if (atomic_read(&rt->rt6i_ref) != 1) { /* This route is used as dummy address holder in some split * nodes. It is not leaked, but it still holds other resources, * which must be released in time. So, scan ascendant nodes * and replace dummy references to this route with references * to still alive ones. */ while (fn) { if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) { fn->leaf = fib6_find_prefix(fn); atomic_inc(&fn->leaf->rt6i_ref); rt6_release(rt); } fn = fn->parent; } /* No more references are possiible at this point. */ if (atomic_read(&rt->rt6i_ref) != 1) BUG(); }
inet6_rt_notify(RTM_DELROUTE, rt); rt6_release(rt); }
int fib6_del(struct rt6_info *rt) { struct fib6_node *fn = rt->rt6i_node; struct rt6_info **rtp;
#if RT6_DEBUG >= 2 if (rt->u.dst.obsolete>0) { BUG_TRAP(fn==NULL || rt->u.dst.obsolete<=0); return -ENOENT; } #endif if (fn == NULL || rt == &ip6_null_entry) return -ENOENT;
BUG_TRAP(fn->fn_flags&RTN_RTINFO);
if (!(rt->rt6i_flags&RTF_CACHE)) fib6_prune_clones(fn, rt);
/* * Walk the leaf entries looking for ourself */
for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) { if (*rtp == rt) { fib6_del_route(fn, rtp); return 0; } } return -ENOENT; }
/* * Tree transversal function. * * Certainly, it is not interrupt safe. * However, it is internally reenterable wrt itself and fib6_add/fib6_del. * It means, that we can modify tree during walking * and use this function for garbage collection, clone pruning, * cleaning tree when a device goes down etc. etc. * * It guarantees that every node will be traversed, * and that it will be traversed only once. * * Callback function w->func may return: * 0 -> continue walking. * positive value -> walking is suspended (used by tree dumps, * and probably by gc, if it will be split to several slices) * negative value -> terminate walking. * * The function itself returns: * 0 -> walk is complete. * >0 -> walk is incomplete (i.e. suspended) * <0 -> walk is terminated by an error. */
int fib6_walk_continue(struct fib6_walker_t *w) { struct fib6_node *fn, *pn;
for (;;) { fn = w->node; if (fn == NULL) return 0;
if (w->prune && fn != w->root && fn->fn_flags&RTN_RTINFO && w->state < FWS_C) { w->state = FWS_C; w->leaf = fn->leaf; } switch (w->state) { #ifdef CONFIG_IPV6_SUBTREES case FWS_S: if (SUBTREE(fn)) { w->node = SUBTREE(fn); continue; } w->state = FWS_L; #endif case FWS_L: if (fn->left) { w->node = fn->left; w->state = FWS_INIT; continue; } w->state = FWS_R; case FWS_R: if (fn->right) { w->node = fn->right; w->state = FWS_INIT; continue; } w->state = FWS_C; w->leaf = fn->leaf; case FWS_C: if (w->leaf && fn->fn_flags&RTN_RTINFO) { int err = w->func(w); if (err) return err; continue; } w->state = FWS_U; case FWS_U: if (fn == w->root) return 0; pn = fn->parent; w->node = pn; #ifdef CONFIG_IPV6_SUBTREES if (SUBTREE(pn) == fn) { BUG_TRAP(fn->fn_flags&RTN_ROOT); w->state = FWS_L; continue; } #endif if (pn->left == fn) { w->state = FWS_R; continue; } if (pn->right == fn) { w->state = FWS_C; w->leaf = w->node->leaf; continue; } #if RT6_DEBUG >= 2 BUG_TRAP(0); #endif } } }
int fib6_walk(struct fib6_walker_t *w) { int res;
w->state = FWS_INIT; w->node = w->root;
fib6_walker_link(w); res = fib6_walk_continue(w); if (res <= 0) fib6_walker_unlink(w); return res; }
static int fib6_clean_node(struct fib6_walker_t *w) { int res; struct rt6_info *rt; struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
for (rt = w->leaf; rt; rt = rt->u.next) { res = c->func(rt, c->arg); if (res < 0) { w->leaf = rt; res = fib6_del(rt); if (res) { #if RT6_DEBUG >= 2 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res); #endif continue; } return 0; } BUG_TRAP(res==0); } w->leaf = rt; return 0; }
/* * Convenient frontend to tree walker. * * func is called on each route. * It may return -1 -> delete this route. * 0 -> continue walking * * prune==1 -> only immediate children of node (certainly, * ignoring pure split nodes) will be scanned. */
void fib6_clean_tree(struct fib6_node *root, int (*func)(struct rt6_info *, void *arg), int prune, void *arg) { struct fib6_cleaner_t c;
c.w.root = root; c.w.func = fib6_clean_node; c.w.prune = prune; c.func = func; c.arg = arg;
fib6_walk(&c.w); }
static int fib6_prune_clone(struct rt6_info *rt, void *arg) { if (rt->rt6i_flags & RTF_CACHE) { RT6_TRACE("pruning clone %p\n", rt); return -1; }
return 0; }
static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt) { fib6_clean_tree(fn, fib6_prune_clone, 1, rt); }
/* * Garbage collection */
static struct fib6_gc_args { int timeout; int more; } gc_args;
static int fib6_age(struct rt6_info *rt, void *arg) { unsigned long now = jiffies;
/* Age clones. Note, that clones are aged out only if they are not in use now. */
if (rt->rt6i_flags & RTF_CACHE) { if (atomic_read(&rt->u.dst.__refcnt) == 0 && (long)(now - rt->u.dst.lastuse) >= gc_args.timeout) { RT6_TRACE("aging clone %p\n", rt); return -1; } gc_args.more++; }
/* * check addrconf expiration here. * They are expired even if they are in use. */
if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) { if ((long)(now - rt->rt6i_expires) > 0) { RT6_TRACE("expiring %p\n", rt); return -1; } gc_args.more++; }
return 0; }
static spinlock_t fib6_gc_lock = SPIN_LOCK_UNLOCKED;
void fib6_run_gc(unsigned long dummy) { if (dummy != ~0UL) { spin_lock_bh(&fib6_gc_lock); gc_args.timeout = (int)dummy; } else { local_bh_disable(); if (!spin_trylock(&fib6_gc_lock)) { mod_timer(&ip6_fib_timer, jiffies + HZ); local_bh_enable(); return; } gc_args.timeout = ip6_rt_gc_interval; } gc_args.more = 0;
write_lock_bh(&rt6_lock); fib6_clean_tree(&ip6_routing_table, fib6_age, 0, NULL); write_unlock_bh(&rt6_lock);
if (gc_args.more) mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval); else { del_timer(&ip6_fib_timer); ip6_fib_timer.expires = 0; } spin_unlock_bh(&fib6_gc_lock); }
void __init fib6_init(void) { if (!fib6_node_kmem) fib6_node_kmem = kmem_cache_create("fib6_nodes", sizeof(struct fib6_node), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); }
#ifdef MODULE void fib6_gc_cleanup(void) { del_timer(&ip6_fib_timer); } #endif
|