Viewing file: pgtable.h (21.85 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 2001 by Ralf Baechle at alii * Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc. */ #ifndef _ASM_PGTABLE_H #define _ASM_PGTABLE_H
#include <asm/addrspace.h> #include <asm/page.h>
#ifndef _LANGUAGE_ASSEMBLY
#include <linux/linkage.h> #include <linux/config.h> #include <linux/mmzone.h> #include <asm/cachectl.h>
/* Cache flushing: * * - flush_cache_all() flushes entire cache * - flush_cache_mm(mm) flushes the specified mm context's cache lines * - flush_cache_page(mm, vmaddr) flushes a single page * - flush_cache_range(mm, start, end) flushes a range of pages * - flush_page_to_ram(page) write back kernel page to ram */ extern void (*_flush_cache_mm)(struct mm_struct *mm); extern void (*_flush_cache_range)(struct mm_struct *mm, unsigned long start, unsigned long end); extern void (*_flush_cache_page)(struct vm_area_struct *vma, unsigned long page); extern void (*_flush_page_to_ram)(struct page * page);
#define flush_cache_all() do { } while(0) #define flush_dcache_page(page) do { } while (0)
#ifndef CONFIG_CPU_R10000 #define flush_cache_mm(mm) _flush_cache_mm(mm) #define flush_cache_range(mm,start,end) _flush_cache_range(mm,start,end) #define flush_cache_page(vma,page) _flush_cache_page(vma, page) #define flush_page_to_ram(page) _flush_page_to_ram(page)
#define flush_icache_range(start, end) _flush_cache_l1()
#define flush_icache_page(vma, page) \ do { \ unsigned long addr; \ addr = (unsigned long) page_address(page); \ _flush_cache_page(vma, addr); \ } while (0) #else /* !CONFIG_CPU_R10000 */ /* * Since the r10k handles VCEs in hardware, most of the flush cache * routines are not needed. Only the icache on a processor is not * coherent with the dcache of the _same_ processor, so we must flush * the icache so that it does not contain stale contents of physical * memory. No flushes are needed for dma coherency, since the o200s * are io coherent. The only place where we might be overoptimizing * out icache flushes are from mprotect (when PROT_EXEC is added). */ extern void andes_flush_icache_page(unsigned long); #define flush_cache_mm(mm) do { } while(0) #define flush_cache_range(mm,start,end) do { } while(0) #define flush_cache_page(vma,page) do { } while(0) #define flush_page_to_ram(page) do { } while(0) #define flush_icache_range(start, end) _flush_cache_l1() #define flush_icache_page(vma, page) \ do { \ if ((vma)->vm_flags & VM_EXEC) \ andes_flush_icache_page(page_address(page)); \ } while (0) #endif /* !CONFIG_CPU_R10000 */
/* * The foll cache flushing routines are MIPS specific. * flush_cache_l2 is needed only during initialization. */ extern void (*_flush_cache_sigtramp)(unsigned long addr); extern void (*_flush_cache_l2)(void); extern void (*_flush_cache_l1)(void);
#define flush_cache_sigtramp(addr) _flush_cache_sigtramp(addr) #define flush_cache_l2() _flush_cache_l2() #define flush_cache_l1() _flush_cache_l1()
/* * Each address space has 2 4K pages as its page directory, giving 1024 * (== PTRS_PER_PGD) 8 byte pointers to pmd tables. Each pmd table is a * pair of 4K pages, giving 1024 (== PTRS_PER_PMD) 8 byte pointers to * page tables. Each page table is a single 4K page, giving 512 (== * PTRS_PER_PTE) 8 byte ptes. Each pgde is initialized to point to * invalid_pmd_table, each pmde is initialized to point to * invalid_pte_table, each pte is initialized to 0. When memory is low, * and a pmd table or a page table allocation fails, empty_bad_pmd_table * and empty_bad_page_table is returned back to higher layer code, so * that the failure is recognized later on. Linux does not seem to * handle these failures very well though. The empty_bad_page_table has * invalid pte entries in it, to force page faults. * Vmalloc handling: vmalloc uses swapper_pg_dir[0] (returned by * pgd_offset_k), which is initalized to point to kpmdtbl. kpmdtbl is * the only single page pmd in the system. kpmdtbl entries point into * kptbl[] array. We reserve 1<<KPTBL_PAGE_ORDER pages to hold the * vmalloc range translations, which the fault handler looks at. */
#endif /* !defined (_LANGUAGE_ASSEMBLY) */
/* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT - 3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PMD_SHIFT + (PAGE_SHIFT + 1 - 3)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1))
/* Entries per page directory level: we use two-level, so we don't really have any PMD directory physically. */ #define PTRS_PER_PGD 1024 #define PTRS_PER_PMD 1024 #define PTRS_PER_PTE 512 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_PGD_NR 0
#define KPTBL_PAGE_ORDER 1 #define VMALLOC_START XKSEG #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END \ (VMALLOC_START + ((1 << KPTBL_PAGE_ORDER) * PTRS_PER_PTE * PAGE_SIZE))
/* Note that we shift the lower 32bits of each EntryLo[01] entry * 6 bits to the left. That way we can convert the PFN into the * physical address by a single 'and' operation and gain 6 additional * bits for storing information which isn't present in a normal * MIPS page table. * * Similar to the Alpha port, we need to keep track of the ref * and mod bits in software. We have a software "yeah you can read * from this page" bit, and a hardware one which actually lets the * process read from the page. On the same token we have a software * writable bit and the real hardware one which actually lets the * process write to the page, this keeps a mod bit via the hardware * dirty bit. * * Certain revisions of the R4000 and R5000 have a bug where if a * certain sequence occurs in the last 3 instructions of an executable * page, and the following page is not mapped, the cpu can do * unpredictable things. The code (when it is written) to deal with * this problem will be in the update_mmu_cache() code for the r4k. */ #define _PAGE_PRESENT (1<<0) /* implemented in software */ #define _PAGE_READ (1<<1) /* implemented in software */ #define _PAGE_WRITE (1<<2) /* implemented in software */ #define _PAGE_ACCESSED (1<<3) /* implemented in software */ #define _PAGE_MODIFIED (1<<4) /* implemented in software */ #define _PAGE_R4KBUG (1<<5) /* workaround for r4k bug */ #define _PAGE_GLOBAL (1<<6) #define _PAGE_VALID (1<<7) #define _PAGE_SILENT_READ (1<<7) /* synonym */ #define _PAGE_DIRTY (1<<8) /* The MIPS dirty bit */ #define _PAGE_SILENT_WRITE (1<<8) #define _CACHE_CACHABLE_NO_WA (0<<9) /* R4600 only */ #define _CACHE_CACHABLE_WA (1<<9) /* R4600 only */ #define _CACHE_UNCACHED (2<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_NONCOHERENT (3<<9) /* R4[0246]00 */ #define _CACHE_CACHABLE_CE (4<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_COW (5<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_CUW (6<<9) /* R4[04]00 only */ #define _CACHE_CACHABLE_ACCELERATED (7<<9) /* R10000 only */ #define _CACHE_MASK (7<<9)
#define __READABLE (_PAGE_READ | _PAGE_SILENT_READ | _PAGE_ACCESSED) #define __WRITEABLE (_PAGE_WRITE | _PAGE_SILENT_WRITE | _PAGE_MODIFIED)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_MODIFIED | _CACHE_MASK)
#ifdef CONFIG_MIPS_UNCACHED #define PAGE_CACHABLE_DEFAULT _CACHE_UNCACHED #else /* ! UNCACHED */ #ifdef CONFIG_SGI_IP22 #define PAGE_CACHABLE_DEFAULT _CACHE_CACHABLE_NONCOHERENT #else /* ! IP22 */ #define PAGE_CACHABLE_DEFAULT _CACHE_CACHABLE_COW #endif /* IP22 */ #endif /* UNCACHED */
#define PAGE_NONE __pgprot(_PAGE_PRESENT | PAGE_CACHABLE_DEFAULT) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ PAGE_CACHABLE_DEFAULT) #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ PAGE_CACHABLE_DEFAULT) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | \ PAGE_CACHABLE_DEFAULT) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ PAGE_CACHABLE_DEFAULT) #define PAGE_USERIO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ _CACHE_UNCACHED) #define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _CACHE_UNCACHED)
/* * MIPS can't do page protection for execute, and considers that the same like * read. Also, write permissions imply read permissions. This is the closest * we can get by reasonable means.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY
#define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED
#if !defined (_LANGUAGE_ASSEMBLY)
#define pte_ERROR(e) \ printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
/* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */
extern unsigned long empty_zero_page; extern unsigned long zero_page_mask;
#define ZERO_PAGE(vaddr) \ (virt_to_page(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask)))
/* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long))
/* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1))
/* * sizeof(void*) == (1 << SIZEOF_PTR_LOG2) */ #define SIZEOF_PTR_LOG2 3
/* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)]; extern pte_t empty_bad_page_table[PAGE_SIZE/sizeof(pte_t)]; extern pmd_t invalid_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)]; extern pmd_t empty_bad_pmd_table[2*PAGE_SIZE/sizeof(pmd_t)];
/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline unsigned long pmd_page(pmd_t pmd) { return pmd_val(pmd); }
extern inline unsigned long pgd_page(pgd_t pgd) { return pgd_val(pgd); }
extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = (((unsigned long) ptep) & PAGE_MASK); }
extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) { pgd_val(*pgdp) = (((unsigned long) pmdp) & PAGE_MASK); }
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
/* * Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ extern inline void set_pte(pte_t *ptep, pte_t pteval) { *ptep = pteval; }
extern inline void pte_clear(pte_t *ptep) { set_pte(ptep, __pte(0)); }
/* * (pmds are folded into pgds so this doesnt get actually called, * but the define is needed for a generic inline function.) */ #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
/* * Empty pmd entries point to the invalid_pte_table. */ extern inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == (unsigned long) invalid_pte_table; }
extern inline int pmd_bad(pmd_t pmd) { return pmd_val(pmd) &~ PAGE_MASK; }
extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != (unsigned long) invalid_pte_table; }
extern inline void pmd_clear(pmd_t *pmdp) { pmd_val(*pmdp) = ((unsigned long) invalid_pte_table); }
/* * Empty pgd entries point to the invalid_pmd_table. */ extern inline int pgd_none(pgd_t pgd) { return pgd_val(pgd) == (unsigned long) invalid_pmd_table; }
extern inline int pgd_bad(pgd_t pgd) { return pgd_val(pgd) &~ PAGE_MASK; }
extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) != (unsigned long) invalid_pmd_table; }
extern inline void pgd_clear(pgd_t *pgdp) { pgd_val(*pgdp) = ((unsigned long) invalid_pmd_table); }
/* * Permanent address of a page. On MIPS64 we never have highmem, so this * is simple. */ #define page_address(page) ((page)->virtual) #ifndef CONFIG_DISCONTIGMEM #define pte_page(x) (mem_map+(unsigned long)((pte_val(x) >> PAGE_SHIFT))) #else #define mips64_pte_pagenr(x) \ (PLAT_NODE_DATA_STARTNR(PHYSADDR_TO_NID(pte_val(x))) + \ PLAT_NODE_DATA_LOCALNR(pte_val(x), PHYSADDR_TO_NID(pte_val(x)))) #define pte_page(x) (mem_map+mips64_pte_pagenr(x)) #endif
/* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte; }
extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); return pte; }
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED|_PAGE_SILENT_WRITE); return pte; }
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ); return pte; }
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; }
extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_READ; if (pte_val(pte) & _PAGE_ACCESSED) pte_val(pte) |= _PAGE_SILENT_READ; return pte; }
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; if (pte_val(pte) & _PAGE_READ) pte_val(pte) |= _PAGE_SILENT_READ; return pte; }
/* * Macro to make mark a page protection value as "uncacheable". Note * that "protection" is really a misnomer here as the protection value * contains the memory attribute bits, dirty bits, and various other * bits as well. */ #define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t _prot) { unsigned long prot = pgprot_val(_prot);
prot = (prot & ~_CACHE_MASK) | _CACHE_UNCACHED;
return __pgprot(prot); }
/* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #ifndef CONFIG_DISCONTIGMEM #define PAGE_TO_PA(page) ((page - mem_map) << PAGE_SHIFT) #else #define PAGE_TO_PA(page) \ ((((page)-(page)->zone->zone_mem_map) << PAGE_SHIFT) \ + ((page)->zone->zone_start_paddr)) #endif #define mk_pte(page, pgprot) \ ({ \ pte_t __pte; \ \ pte_val(__pte) = ((unsigned long)(PAGE_TO_PA(page))) | \ pgprot_val(pgprot); \ \ __pte; \ })
extern inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { return __pte(physpage | pgprot_val(pgprot)); }
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); }
#define page_pte(page) page_pte_prot(page, __pgprot(0))
/* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, 0)
#define pgd_index(address) ((address >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
/* to find an entry in a page-table-directory */ extern inline pgd_t *pgd_offset(struct mm_struct *mm, unsigned long address) { return mm->pgd + pgd_index(address); }
/* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); }
/* Find an entry in the third-level page table.. */ extern inline pte_t *pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) (pmd_page(*dir)) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); }
/* * Initialize a new pgd / pmd table with invalid pointers. */ extern void pgd_init(unsigned long page); extern void pmd_init(unsigned long page, unsigned long pagetable);
extern pgd_t swapper_pg_dir[1024]; extern void paging_init(void);
extern void (*update_mmu_cache)(struct vm_area_struct *vma, unsigned long address, pte_t pte);
/* * Non-present pages: high 24 bits are offset, next 8 bits type, * low 32 bits zero. */ extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; }
#define SWP_TYPE(x) (((x).val >> 32) & 0xff) #define SWP_OFFSET(x) ((x).val >> 40) #define SWP_ENTRY(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define swp_entry_to_pte(x) ((pte_t) { (x).val })
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define PageSkip(page) (0) #ifndef CONFIG_DISCONTIGMEM #define kern_addr_valid(addr) (1) #endif
/* TLB operations. */ extern inline void tlb_probe(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbp\n\t" ".set reorder"); }
extern inline void tlb_read(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbr\n\t" ".set reorder"); }
extern inline void tlb_write_indexed(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbwi\n\t" ".set reorder"); }
extern inline void tlb_write_random(void) { __asm__ __volatile__( ".set noreorder\n\t" "tlbwr\n\t" ".set reorder"); }
/* Dealing with various CP0 mmu/cache related registers. */
/* CP0_PAGEMASK register */ extern inline unsigned long get_pagemask(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $5\n\t" ".set reorder" : "=r" (val)); return val; }
extern inline void set_pagemask(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %z0, $5\n\t" ".set reorder" : : "Jr" (val)); }
/* CP0_ENTRYLO0 and CP0_ENTRYLO1 registers */ extern inline unsigned long get_entrylo0(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "dmfc0 %0, $2\n\t" ".set reorder" : "=r" (val)); return val; }
extern inline void set_entrylo0(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "dmtc0 %z0, $2\n\t" ".set reorder" : : "Jr" (val)); }
extern inline unsigned long get_entrylo1(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "dmfc0 %0, $3\n\t" ".set reorder" : "=r" (val));
return val; }
extern inline void set_entrylo1(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "dmtc0 %z0, $3\n\t" ".set reorder" : : "Jr" (val)); }
/* CP0_ENTRYHI register */ extern inline unsigned long get_entryhi(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "dmfc0 %0, $10\n\t" ".set reorder" : "=r" (val));
return val; }
extern inline void set_entryhi(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "dmtc0 %z0, $10\n\t" ".set reorder" : : "Jr" (val)); }
/* CP0_INDEX register */ extern inline unsigned int get_index(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $0\n\t" ".set reorder" : "=r" (val)); return val; }
extern inline void set_index(unsigned int val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %z0, $0\n\t" ".set reorder\n\t" : : "Jr" (val)); }
/* CP0_WIRED register */ extern inline unsigned long get_wired(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $6\n\t" ".set reorder\n\t" : "=r" (val)); return val; }
extern inline void set_wired(unsigned long val) { __asm__ __volatile__( "\n\t.set noreorder\n\t" "mtc0 %z0, $6\n\t" ".set reorder" : : "Jr" (val)); }
extern inline unsigned long get_info(void) { unsigned long val;
__asm__( ".set push\n\t" ".set reorder\n\t" "mfc0 %0, $7\n\t" ".set pop" : "=r" (val)); return val; }
/* CP0_TAGLO and CP0_TAGHI registers */ extern inline unsigned long get_taglo(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $28\n\t" ".set reorder" : "=r" (val)); return val; }
extern inline void set_taglo(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %z0, $28\n\t" ".set reorder" : : "Jr" (val)); }
extern inline unsigned long get_taghi(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "mfc0 %0, $29\n\t" ".set reorder" : "=r" (val)); return val; }
extern inline void set_taghi(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "mtc0 %z0, $29\n\t" ".set reorder" : : "Jr" (val)); }
/* CP0_CONTEXT register */ extern inline unsigned long get_context(void) { unsigned long val;
__asm__ __volatile__( ".set noreorder\n\t" "dmfc0 %0, $4\n\t" ".set reorder" : "=r" (val));
return val; }
extern inline void set_context(unsigned long val) { __asm__ __volatile__( ".set noreorder\n\t" "dmtc0 %z0, $4\n\t" ".set reorder" : : "Jr" (val)); }
#include <asm-generic/pgtable.h>
#endif /* !defined (_LANGUAGE_ASSEMBLY) */
/* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0)
#endif /* _ASM_PGTABLE_H */
|