Viewing file: xfs_mount.c (46.55 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ */
#include <xfs.h>
#ifdef CELL_CAPABLE void cxfs_unmount(xfs_mount_t *); #else # define cxfs_unmount(mp) do { } while (0) #endif
STATIC void xfs_mount_reset_sbqflags(xfs_mount_t *); STATIC void xfs_mount_log_sbunit(xfs_mount_t *, __int64_t); STATIC int xfs_uuid_mount(xfs_mount_t *);
mutex_t xfs_uuidtabmon; /* monitor for uuidtab */ STATIC int xfs_uuidtab_size; STATIC uuid_t *xfs_uuidtab;
STATIC void xfs_uuid_unmount(xfs_mount_t *);
void xfs_xlatesb(void *, xfs_sb_t *, int, xfs_arch_t, __int64_t);
static struct { short offset; short type; /* 0 = integer * 1 = binary / string (no translation) */ } xfs_sb_info[] = { { offsetof(xfs_sb_t, sb_magicnum), 0 }, { offsetof(xfs_sb_t, sb_blocksize), 0 }, { offsetof(xfs_sb_t, sb_dblocks), 0 }, { offsetof(xfs_sb_t, sb_rblocks), 0 }, { offsetof(xfs_sb_t, sb_rextents), 0 }, { offsetof(xfs_sb_t, sb_uuid), 1 }, { offsetof(xfs_sb_t, sb_logstart), 0 }, { offsetof(xfs_sb_t, sb_rootino), 0 }, { offsetof(xfs_sb_t, sb_rbmino), 0 }, { offsetof(xfs_sb_t, sb_rsumino), 0 }, { offsetof(xfs_sb_t, sb_rextsize), 0 }, { offsetof(xfs_sb_t, sb_agblocks), 0 }, { offsetof(xfs_sb_t, sb_agcount), 0 }, { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, { offsetof(xfs_sb_t, sb_logblocks), 0 }, { offsetof(xfs_sb_t, sb_versionnum), 0 }, { offsetof(xfs_sb_t, sb_sectsize), 0 }, { offsetof(xfs_sb_t, sb_inodesize), 0 }, { offsetof(xfs_sb_t, sb_inopblock), 0 }, { offsetof(xfs_sb_t, sb_fname[0]), 1 }, { offsetof(xfs_sb_t, sb_blocklog), 0 }, { offsetof(xfs_sb_t, sb_sectlog), 0 }, { offsetof(xfs_sb_t, sb_inodelog), 0 }, { offsetof(xfs_sb_t, sb_inopblog), 0 }, { offsetof(xfs_sb_t, sb_agblklog), 0 }, { offsetof(xfs_sb_t, sb_rextslog), 0 }, { offsetof(xfs_sb_t, sb_inprogress), 0 }, { offsetof(xfs_sb_t, sb_imax_pct), 0 }, { offsetof(xfs_sb_t, sb_icount), 0 }, { offsetof(xfs_sb_t, sb_ifree), 0 }, { offsetof(xfs_sb_t, sb_fdblocks), 0 }, { offsetof(xfs_sb_t, sb_frextents), 0 }, { offsetof(xfs_sb_t, sb_uquotino), 0 }, { offsetof(xfs_sb_t, sb_gquotino), 0 }, { offsetof(xfs_sb_t, sb_qflags), 0 }, { offsetof(xfs_sb_t, sb_flags), 0 }, { offsetof(xfs_sb_t, sb_shared_vn), 0 }, { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, { offsetof(xfs_sb_t, sb_unit), 0 }, { offsetof(xfs_sb_t, sb_width), 0 }, { offsetof(xfs_sb_t, sb_dirblklog), 0 }, { offsetof(xfs_sb_t, sb_dummy), 1 }, { sizeof(xfs_sb_t), 0 } };
/* * Return a pointer to an initialized xfs_mount structure. */ xfs_mount_t * xfs_mount_init(void) { xfs_mount_t *mp;
mp = kmem_zalloc(sizeof(*mp), KM_SLEEP);
AIL_LOCKINIT(&mp->m_ail_lock, "xfs_ail"); spinlock_init(&mp->m_sb_lock, "xfs_sb"); mutex_init(&mp->m_ilock, MUTEX_DEFAULT, "xfs_ilock"); initnsema(&mp->m_growlock, 1, "xfs_grow"); /* * Initialize the AIL. */ xfs_trans_ail_init(mp);
/* Init freeze sync structures */ spinlock_init(&mp->m_freeze_lock, "xfs_freeze"); init_sv(&mp->m_wait_unfreeze, SV_DEFAULT, "xfs_freeze", 0); atomic_set(&mp->m_active_trans, 0);
return mp; } /* xfs_mount_init */ /* * Free up the resources associated with a mount structure. Assume that * the structure was initially zeroed, so we can tell which fields got * initialized. */ void xfs_mount_free( xfs_mount_t *mp, int remove_bhv) { if (mp->m_ihash) xfs_ihash_free(mp); if (mp->m_chash) xfs_chash_free(mp);
if (mp->m_perag) { int agno;
mrfree(&mp->m_peraglock); for (agno = 0; agno < mp->m_maxagi; agno++) if (mp->m_perag[agno].pagb_list) kmem_free(mp->m_perag[agno].pagb_list, sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS); kmem_free(mp->m_perag, sizeof(xfs_perag_t) * mp->m_sb.sb_agcount); }
#if 0 /* * XXXdpd - Doesn't work now for shutdown case. * Should at least free the memory. */ ASSERT(mp->m_ail.ail_back == (xfs_log_item_t*)&(mp->m_ail)); ASSERT(mp->m_ail.ail_forw == (xfs_log_item_t*)&(mp->m_ail)); #endif AIL_LOCK_DESTROY(&mp->m_ail_lock); spinlock_destroy(&mp->m_sb_lock); mutex_destroy(&mp->m_ilock); freesema(&mp->m_growlock);
if (mp->m_fsname != NULL) { kmem_free(mp->m_fsname, mp->m_fsname_len); } if (mp->m_quotainfo != NULL) { xfs_qm_unmount_quotadestroy(mp); }
if (remove_bhv) { VFS_REMOVEBHV(XFS_MTOVFS(mp), &mp->m_bhv); } spinlock_destroy(&mp->m_freeze_lock); sv_destroy(&mp->m_wait_unfreeze); kmem_free(mp, sizeof(xfs_mount_t)); }
/* * Check the validity of the SB found. */ STATIC int xfs_mount_validate_sb( xfs_mount_t *mp, xfs_sb_t *sbp) { /* * If the log device and data device have the * same device number, the log is internal. * Consequently, the sb_logstart should be non-zero. If * we have a zero sb_logstart in this case, we may be trying to mount * a volume filesystem in a non-volume manner. */ if (sbp->sb_magicnum != XFS_SB_MAGIC) { cmn_err(CE_WARN, "XFS: bad magic number"); return XFS_ERROR(EWRONGFS); }
if (!XFS_SB_GOOD_VERSION(sbp)) { cmn_err(CE_WARN, "XFS: bad version"); return XFS_ERROR(EWRONGFS); } if (sbp->sb_logstart == 0 && mp->m_logdev == mp->m_dev) { cmn_err(CE_WARN, "XFS: filesystem is marked as having an external log; specify logdev on the\nmount command line."); return XFS_ERROR(EFSCORRUPTED); } if (sbp->sb_logstart != 0 && mp->m_logdev && mp->m_logdev != mp->m_dev) { cmn_err(CE_WARN, "XFS: filesystem is marked as having an internal log; don't specify logdev on\nthe mount command line."); return XFS_ERROR(EFSCORRUPTED); }
/* * More sanity checking. These were stolen directly from * xfs_repair. */ if (sbp->sb_blocksize <= 0 || sbp->sb_agcount <= 0 || sbp->sb_sectsize <= 0 || sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || sbp->sb_imax_pct > 100) { cmn_err(CE_WARN, "XFS: SB sanity check 1 failed"); return XFS_ERROR(EFSCORRUPTED); }
/* * sanity check ag count, size fields against data size field */ if (sbp->sb_dblocks == 0 || sbp->sb_dblocks > (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * sbp->sb_agblocks + XFS_MIN_AG_BLOCKS) { cmn_err(CE_WARN, "XFS: SB sanity check 2 failed"); return XFS_ERROR(EFSCORRUPTED); }
#if !XFS_BIG_FILESYSTEMS if (sbp->sb_dblocks > INT_MAX || sbp->sb_rblocks > INT_MAX) { cmn_err(CE_WARN, "XFS: File systems greater than 1TB not supported on this system."); return XFS_ERROR(E2BIG); } #endif
if (sbp->sb_inprogress) { cmn_err(CE_WARN, "XFS: file system busy"); return XFS_ERROR(EFSCORRUPTED); }
#ifndef CONFIG_PAGEBUF_DEBUG /* * Until this is fixed only page-sized data blocks work. */ if (sbp->sb_blocksize != PAGE_SIZE) { cmn_err(CE_WARN, "XFS: Trying to mount file system with blocksize %d bytes", sbp->sb_blocksize); cmn_err(CE_WARN, "XFS: Only page-sized (%d bytes) blocksize currently works.", PAGE_SIZE); return XFS_ERROR(EWRONGFS); } #endif return (0); }
void xfs_initialize_perag(xfs_mount_t *mp, int agcount) { int index, max_metadata; xfs_perag_t *pag; xfs_agino_t agino; xfs_ino_t ino; xfs_sb_t *sbp = &mp->m_sb; xfs_ino_t max_inum = XFS_MAXINUMBER_32;
/* Check to see if the filesystem can overflow 32 bit inodes */ agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
/* Clear the mount flag if no inode can overflow 32 bits * on this filesystem. */ if (ino <= max_inum) { mp->m_flags &= ~XFS_MOUNT_32BITINODES; }
/* If we can overflow then setup the ag headers accordingly */ if (mp->m_flags & XFS_MOUNT_32BITINODES) { /* Calculate how much should be reserved for inodes to * meet the max inode percentage. */ if (mp->m_maxicount) { __uint64_t icount;
icount = sbp->sb_dblocks * sbp->sb_imax_pct; do_div(icount, 100); icount += sbp->sb_agblocks - 1; do_div(icount, mp->m_ialloc_blks); max_metadata = icount; } else { max_metadata = agcount; } for (index = 0; index < agcount; index++) { ino = XFS_AGINO_TO_INO(mp, index, agino); if (ino > max_inum) { index++; break; }
/* This ag is prefered for inodes */ pag = &mp->m_perag[index]; pag->pagi_inodeok = 1; if (index < max_metadata) pag->pagf_metadata = 1; } } else { /* Setup default behavior for smaller filesystems */ for (index = 0; index < agcount; index++) { pag = &mp->m_perag[index]; pag->pagi_inodeok = 1; } } mp->m_maxagi = index; }
/* * xfs_xlatesb * * data - on disk version of sb * sb - a superblock * dir - conversion direction: <0 - convert sb to buf * >0 - convert buf to sb * arch - architecture to read/write from/to buf * fields - which fields to copy (bitmask) */ void xfs_xlatesb(void *data, xfs_sb_t *sb, int dir, xfs_arch_t arch, __int64_t fields) { xfs_caddr_t buf_ptr; xfs_caddr_t mem_ptr; ASSERT(dir); ASSERT(fields);
if (!fields) return; buf_ptr=(xfs_caddr_t)data; mem_ptr=(xfs_caddr_t)sb; while (fields) { xfs_sb_field_t f; int first; int size;
f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); first = xfs_sb_info[f].offset; size = xfs_sb_info[f + 1].offset - first; ASSERT(xfs_sb_info[f].type==0 || xfs_sb_info[f].type==1); if (arch == ARCH_NOCONVERT || size==1 || xfs_sb_info[f].type==1) { if (dir>0) { bcopy(buf_ptr + first, mem_ptr + first, size); } else { bcopy(mem_ptr + first, buf_ptr + first, size); } } else { switch (size) { case 2: INT_XLATE(*(__uint16_t*)(buf_ptr+first), *(__uint16_t*)(mem_ptr+first), dir, arch); break; case 4: INT_XLATE(*(__uint32_t*)(buf_ptr+first), *(__uint32_t*)(mem_ptr+first), dir, arch); break; case 8: INT_XLATE(*(__uint64_t*)(buf_ptr+first), *(__uint64_t*)(mem_ptr+first), dir, arch); break; default: ASSERT(0); } } fields &= ~(1LL << f); } }
/* * xfs_readsb * * Does the initial read of the superblock. This has been split out from * xfs_mountfs so that the cxfs v1 array mount code can get at the * unique id for the file system before deciding whether we are going * to mount things as a cxfs client or server. */ int xfs_readsb(xfs_mount_t *mp, dev_t dev) { xfs_buf_t *bp; xfs_sb_t *sbp; int error = 0;
ASSERT(mp->m_sb_bp == 0);
/* * Allocate a (locked) buffer to hold the superblock. * This will be kept around at all time to optimize * access to the superblock. */ bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 1, PBF_LOCK|PBF_READ|PBF_MAPPED|PBF_MAPPABLE|PBF_FS_MANAGED); ASSERT(bp != NULL); ASSERT(XFS_BUF_ISBUSY(bp) && XFS_BUF_VALUSEMA(bp) <= 0);
/* * Initialize the mount structure from the superblock. * But first do some basic consistency checking. */ sbp = XFS_BUF_TO_SBP(bp); xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), 1, ARCH_CONVERT, XFS_SB_ALL_BITS); if ((error = xfs_mount_validate_sb(mp, &(mp->m_sb)))) { cmn_err(CE_WARN, "XFS: SB validate failed"); goto err; }
mp->m_sb_bp = bp; xfs_buf_relse(bp); ASSERT(XFS_BUF_VALUSEMA(bp) > 0); return 0;
err: bp->pb_flags &= ~PBF_FS_MANAGED; xfs_buf_relse(bp); return error; }
/* * xfs_mount_common * * Mount initialization code establishing various mount * fields from the superblock associated with the given * mount structure */ void xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) { int i;
mp->m_agfrotor = mp->m_agirotor = 0; mp->m_maxagi = mp->m_sb.sb_agcount; mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; mp->m_litino = sbp->sb_inodesize - ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t)); mp->m_blockmask = sbp->sb_blocksize - 1; mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; mp->m_blockwmask = mp->m_blockwsize - 1;
/* * Setup for attributes, in case they get created. * This value is for inodes getting attributes for the first time, * the per-inode value is for old attribute values. */ ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048); switch (sbp->sb_inodesize) { case 256: mp->m_attroffset = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(2); break; case 512: case 1024: case 2048: mp->m_attroffset = XFS_BMDR_SPACE_CALC(12); break; default: ASSERT(0); } ASSERT(mp->m_attroffset < XFS_LITINO(mp));
for (i = 0; i < 2; i++) { mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, xfs_alloc, i == 0); mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, xfs_alloc, i == 0); } for (i = 0; i < 2; i++) { mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, xfs_bmbt, i == 0); mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, xfs_bmbt, i == 0); } for (i = 0; i < 2; i++) { mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, xfs_inobt, i == 0); mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, xfs_inobt, i == 0); }
mp->m_bsize = XFS_FSB_TO_BB(mp, 1); mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, sbp->sb_inopblock); mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; }
extern void xfs_refcache_sbdirty(struct super_block*);
/* * xfs_mountfs * * This function does the following on an initial mount of a file system: * - reads the superblock from disk and init the mount struct * - if we're a 32-bit kernel, do a size check on the superblock * so we don't mount terabyte filesystems * - init mount struct realtime fields * - allocate inode hash table for fs * - init directory manager * - perform recovery and init the log manager * - if XFS_MFSI_CLIENT is set then we are doing an import * or an enterprise mount in client mode. We do not go * near the log, and do not mess with a bunch of stuff. * - If XFS_MFSI_SECOND is set then we are doing a secondary * mount operation for cxfs which may be client mode * import or enterprise or a server-mode secondary * mount operation as part of relocation or recovery. */ int xfs_mountfs( vfs_t *vfsp, xfs_mount_t *mp, dev_t dev, int mfsi_flags) { xfs_buf_t *bp; xfs_sb_t *sbp = &(mp->m_sb); int error = 0; xfs_inode_t *rip; vnode_t *rvp = 0; int readio_log; int writeio_log; vmap_t vmap; xfs_daddr_t d; extern xfs_ioops_t xfs_iocore_xfs; /* from xfs_iocore.c */ __uint64_t ret64; uint quotaflags, quotaondisk, rootqcheck, needquotacheck; boolean_t needquotamount; __int64_t update_flags; int agno, noio; int uuid_mounted = 0;
noio = dev == 0 && mp->m_sb_bp != NULL; if (mp->m_sb_bp == NULL) { if ((error = xfs_readsb(mp, dev))) { return (error); } } xfs_mount_common(mp, sbp);
/* * Check if sb_agblocks is aligned at stripe boundary * If sb_agblocks is NOT aligned turn off m_dalign since * allocator alignment is within an ag, therefore ag has * to be aligned at stripe boundary. */ update_flags = 0LL; if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) { /* * If stripe unit and stripe width are not multiples * of the fs blocksize turn off alignment. */ if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || (BBTOB(mp->m_swidth) & mp->m_blockmask)) { if (mp->m_flags & XFS_MOUNT_RETERR) { cmn_err(CE_WARN, "XFS: alignment check 1 failed"); error = XFS_ERROR(EINVAL); goto error1; } mp->m_dalign = mp->m_swidth = 0; } else { /* * Convert the stripe unit and width to FSBs. */ mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { if (mp->m_flags & XFS_MOUNT_RETERR) { error = XFS_ERROR(EINVAL); goto error1; } mp->m_dalign = 0; mp->m_swidth = 0; } else if (mp->m_dalign) { mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); } else { if (mp->m_flags & XFS_MOUNT_RETERR) { cmn_err(CE_WARN, "XFS: alignment check 3 failed"); error = XFS_ERROR(EINVAL); goto error1; } mp->m_swidth = 0; } } /* * Update superblock with new values * and log changes */ if (XFS_SB_VERSION_HASDALIGN(sbp)) { if (sbp->sb_unit != mp->m_dalign) { sbp->sb_unit = mp->m_dalign; update_flags |= XFS_SB_UNIT; } if (sbp->sb_width != mp->m_swidth) { sbp->sb_width = mp->m_swidth; update_flags |= XFS_SB_WIDTH; } } } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && XFS_SB_VERSION_HASDALIGN(&mp->m_sb)) { mp->m_dalign = sbp->sb_unit; mp->m_swidth = sbp->sb_width; }
xfs_alloc_compute_maxlevels(mp); xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); xfs_ialloc_compute_maxlevels(mp);
vfsp->vfs_bsize = (u_int)XFS_FSB_TO_B(mp, 1);
if (sbp->sb_imax_pct) { __uint64_t icount;
/* Make sure the maximum inode count is a multiple of the * units we allocate inodes in. */
icount = sbp->sb_dblocks * sbp->sb_imax_pct; do_div(icount, 100); do_div(icount, mp->m_ialloc_blks); mp->m_maxicount = (icount * mp->m_ialloc_blks) << sbp->sb_inopblog; } else mp->m_maxicount = 0;
/* * XFS uses the uuid from the superblock as the unique * identifier for fsid. We can not use the uuid from the volume * since a single partition filesystem is identical to a single * partition volume/filesystem. */ if ((mfsi_flags & XFS_MFSI_SECOND) == 0 && (mp->m_flags & XFS_MOUNT_NOUUID) == 0) { if (xfs_uuid_mount(mp)) { error = XFS_ERROR(EINVAL); goto error1; } uuid_mounted=1; ret64 = uuid_hash64(&sbp->sb_uuid); bcopy(&ret64, &vfsp->vfs_fsid, sizeof(ret64)); }
/* * Set the default minimum read and write sizes unless * already specified in a mount option. * We use smaller I/O sizes when the file system * is being used for NFS service (wsync mount option). */ if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { if (mp->m_flags & XFS_MOUNT_WSYNC) { readio_log = XFS_WSYNC_READIO_LOG; writeio_log = XFS_WSYNC_WRITEIO_LOG; } else { readio_log = XFS_READIO_LOG_LARGE; writeio_log = XFS_WRITEIO_LOG_LARGE; } } else { readio_log = mp->m_readio_log; writeio_log = mp->m_writeio_log; }
/* * Set the number of readahead buffers to use based on * physical memory size. */ if (xfs_physmem <= 4096) /* <= 16MB */ mp->m_nreadaheads = XFS_RW_NREADAHEAD_16MB; else if (xfs_physmem <= 8192) /* <= 32MB */ mp->m_nreadaheads = XFS_RW_NREADAHEAD_32MB; else mp->m_nreadaheads = XFS_RW_NREADAHEAD_K32; if (sbp->sb_blocklog > readio_log) { mp->m_readio_log = sbp->sb_blocklog; } else { mp->m_readio_log = readio_log; } mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); if (sbp->sb_blocklog > writeio_log) { mp->m_writeio_log = sbp->sb_blocklog; } else { mp->m_writeio_log = writeio_log; } mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
/* * Set the inode cluster size based on the physical memory * size. This may still be overridden by the file system * block size if it is larger than the chosen cluster size. */ if (xfs_physmem <= btoc(32 * 1024 * 1024)) { /* <= 32 MB */ mp->m_inode_cluster_size = XFS_INODE_SMALL_CLUSTER_SIZE; } else { mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; } /* * Set whether we're using inode alignment. */ if (XFS_SB_VERSION_HASALIGN(&mp->m_sb) && mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; else mp->m_inoalign_mask = 0; /* * If we are using stripe alignment, check whether * the stripe unit is a multiple of the inode alignment */ if (mp->m_dalign && mp->m_inoalign_mask && !(mp->m_dalign & mp->m_inoalign_mask)) mp->m_sinoalign = mp->m_dalign; else mp->m_sinoalign = 0; /* * Check that the data (and log if separate) are an ok size. */ d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { cmn_err(CE_WARN, "XFS: size check 1 failed"); error = XFS_ERROR(E2BIG); goto error1; } if (!noio) { error = xfs_read_buf(mp, mp->m_ddev_targp, d - 1, 1, 0, &bp); if (!error) { xfs_buf_relse(bp); } else { cmn_err(CE_WARN, "XFS: size check 2 failed"); if (error == ENOSPC) { error = XFS_ERROR(E2BIG); } goto error1; } }
if (!noio && ((mfsi_flags & XFS_MFSI_CLIENT) == 0) && mp->m_logdev && mp->m_logdev != mp->m_dev) { d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { cmn_err(CE_WARN, "XFS: size check 3 failed"); error = XFS_ERROR(E2BIG); goto error1; } error = xfs_read_buf(mp, &mp->m_logdev_targ, d - 1, 1, 0, &bp); if (!error) { xfs_buf_relse(bp); } else { cmn_err(CE_WARN, "XFS: size check 3 failed"); if (error == ENOSPC) { error = XFS_ERROR(E2BIG); } goto error1; } }
/* * Disallow mount attempts with (IRIX) project quota enabled */ if (XFS_SB_VERSION_HASQUOTA(&mp->m_sb) && (mp->m_sb.sb_qflags & XFS_PQUOTA_ACCT)) { cmn_err(CE_WARN, "XFS: IRIX project quota are enabled"); error = XFS_ERROR(ENOSYS); goto error1; }
/* * Initialize realtime fields in the mount structure */ if ((error = xfs_rtmount_init(mp))) { cmn_err(CE_WARN, "XFS: RT mount failed"); goto error1; }
/* * Set up timer list structure for nfs refcache */ init_timer(&mp->m_sbdirty_timer); mp->m_sbdirty_timer.function = (void (*)(unsigned long)) xfs_refcache_sbdirty;
/* * For client case we are done now */ if (mfsi_flags & XFS_MFSI_CLIENT) { return(0); }
/* Initialize the I/O function vector with XFS functions */ mp->m_io_ops = xfs_iocore_xfs;
/* * Copies the low order bits of the timestamp and the randomly * set "sequence" number out of a UUID. */ uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
/* * The vfs structure needs to have a file system independent * way of checking for the invariant file system ID. Since it * can't look at mount structures it has a pointer to the data * in the mount structure. * * File systems that don't support user level file handles (i.e. * all of them except for XFS) will leave vfs_altfsid as NULL. */ vfsp->vfs_altfsid = (fsid_t *)mp->m_fixedfsid; mp->m_dmevmask = 0; /* not persistent; set after each mount */
/* * Select the right directory manager. */ mp->m_dirops = XFS_SB_VERSION_HASDIRV2(&mp->m_sb) ? xfsv2_dirops : xfsv1_dirops;
/* * Initialize directory manager's entries. */ XFS_DIR_MOUNT(mp);
/* * Initialize the attribute manager's entries. */ mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
/* * Initialize the precomputed transaction reservations values. */ xfs_trans_init(mp); if (noio) { ASSERT((mfsi_flags & XFS_MFSI_CLIENT) == 0); return 0; }
/* * Allocate and initialize the inode hash table for this * file system. */ xfs_ihash_init(mp); xfs_chash_init(mp);
/* * Allocate and initialize the per-ag data. */ mrinit(&mp->m_peraglock, "xperag"); mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
xfs_initialize_perag(mp, sbp->sb_agcount);
/* * log's mount-time initialization. Perform 1st part recovery if needed */ if (sbp->sb_logblocks > 0) { /* check for volume case */ error = xfs_log_mount(mp, mp->m_logdev, XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); if (error) { cmn_err(CE_WARN, "XFS: log mount failed"); goto error2; } } else { /* No log has been defined */ cmn_err(CE_WARN, "XFS: no log defined"); error = XFS_ERROR(EFSCORRUPTED); goto error2; }
/* * Get and sanity-check the root inode. * Save the pointer to it in the mount structure. */ error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_ILOCK_EXCL, &rip, 0); if (error) { cmn_err(CE_WARN, "XFS: failed to read root inode"); goto error3; }
ASSERT(rip != NULL); rvp = XFS_ITOV(rip); if ((rip->i_d.di_mode & IFMT) != IFDIR) { cmn_err(CE_WARN, "XFS: corrupted root inode"); VMAP(rvp, rip, vmap); prdev("Root inode %llu is not a directory", (int)rip->i_dev, (unsigned long long)rip->i_ino); rvp->v_flag |= VPURGE; xfs_iunlock(rip, XFS_ILOCK_EXCL); VN_RELE(rvp); vn_purge(rvp, &vmap); error = XFS_ERROR(EFSCORRUPTED); goto error3; } VN_FLAGSET(rvp, VROOT); mp->m_rootip = rip; /* save it */
xfs_iunlock(rip, XFS_ILOCK_EXCL);
quotaondisk = XFS_SB_VERSION_HASQUOTA(&mp->m_sb) && mp->m_sb.sb_qflags & (XFS_UQUOTA_ACCT|XFS_GQUOTA_ACCT);
/* * If the device itself is read-only, we can't allow * the user to change the state of quota on the mount - * this would generate a transaction on the ro device, * which would lead to an I/O error and shutdown */
if (((quotaondisk && !XFS_IS_QUOTA_ON(mp)) || (!quotaondisk && XFS_IS_QUOTA_ON(mp))) && (is_read_only(mp->m_dev) || is_read_only(mp->m_logdev))) { cmn_err(CE_WARN, "XFS: device %s is read-only, cannot change " "quota state. Please mount with%s quota option.", mp->m_fsname, quotaondisk ? "" : "out"); rvp->v_flag |= VPURGE; VN_RELE(rvp); vn_remove(rvp); error = XFS_ERROR(EPERM); goto error3; }
/* * Initialize realtime inode pointers in the mount structure */ if ((error = xfs_rtmount_inodes(mp))) { /* * Free up the root inode. */ cmn_err(CE_WARN, "XFS: failed to read RT inodes"); rvp->v_flag |= VPURGE; VMAP(rvp, rip, vmap); VN_RELE(rvp); vn_purge(rvp, &vmap); goto error3; }
/* * If fs is not mounted readonly, then update the superblock * unit and width changes. */ if (update_flags && !(vfsp->vfs_flag & VFS_RDONLY)) xfs_mount_log_sbunit(mp, update_flags);
quotaflags = 0; needquotamount = B_FALSE;
/* * Figure out if we'll need to do a quotacheck. * The requirements are a little different depending on whether * this fs is root or not. */ rootqcheck = (mp->m_dev == rootdev && quotaondisk && ((mp->m_sb.sb_qflags & XFS_UQUOTA_ACCT && (mp->m_sb.sb_qflags & XFS_UQUOTA_CHKD) == 0) || (mp->m_sb.sb_qflags & XFS_GQUOTA_ACCT && (mp->m_sb.sb_qflags & XFS_GQUOTA_CHKD) == 0))); needquotacheck = rootqcheck || XFS_QM_NEED_QUOTACHECK(mp); if (XFS_IS_QUOTA_ON(mp) || quotaondisk) { /* * Call mount_quotas at this point only if we won't have to do * a quotacheck. */ if (quotaondisk && !needquotacheck) { /* * If the xfs quota code isn't installed, * we have to reset the quotachk'd bit. * If an error occured, qm_mount_quotas code * has already disabled quotas. So, just finish * mounting, and get on with the boring life * without disk quotas. */ if (xfs_qm_mount_quotas(mp)) xfs_mount_reset_sbqflags(mp); } else { /* * Clear the quota flags, but remember them. This * is so that the quota code doesn't get invoked * before we're ready. This can happen when an * inode goes inactive and wants to free blocks, * or via xfs_log_mount_finish. */ quotaflags = mp->m_qflags; mp->m_qflags = 0; needquotamount = B_TRUE; } }
/* * Finish recovering the file system. This part needed to be * delayed until after the root and real-time bitmap inodes * were consistently read in. */ error = xfs_log_mount_finish(mp, mfsi_flags); if (error) { cmn_err(CE_WARN, "XFS: log mount finish failed"); goto error3; }
if (needquotamount) { ASSERT(mp->m_qflags == 0); mp->m_qflags = quotaflags; rootqcheck = ((XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY) && mp->m_dev == rootdev && needquotacheck); if (rootqcheck && (error = xfs_quotacheck_read_only(mp))) goto error2; if (xfs_qm_mount_quotas(mp)) xfs_mount_reset_sbqflags(mp); if (rootqcheck) XFS_MTOVFS(mp)->vfs_flag |= VFS_RDONLY; }
#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) if (! (XFS_IS_QUOTA_ON(mp))) xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on"); else xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on"); #endif
#ifdef QUOTADEBUG if (XFS_IS_QUOTA_ON(mp) && xfs_qm_internalqcheck(mp)) cmn_err(CE_WARN, "XFS: mount internalqcheck failed"); #endif
return (0);
error3: xfs_log_unmount_dealloc(mp); error2: xfs_ihash_free(mp); xfs_chash_free(mp); mrfree(&mp->m_peraglock); for (agno = 0; agno < sbp->sb_agcount; agno++) if (mp->m_perag[agno].pagb_list) kmem_free(mp->m_perag[agno].pagb_list, sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS); kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t)); mp->m_perag = NULL; /* FALLTHROUGH */ error1: if (uuid_mounted) xfs_uuid_unmount(mp); xfs_freesb(mp); return error; }
/* * xfs_unmountfs * * This flushes out the inodes,dquots and the superblock, unmounts the * log and makes sure that incore structures are freed. */ int xfs_unmountfs(xfs_mount_t *mp, int vfs_flags, struct cred *cr) { int ndquots; #if defined(DEBUG) || defined(INDUCE_IO_ERROR) int64_t fsid; #endif
xfs_iflush_all(mp, XFS_FLUSH_ALL);
/* * Purge the dquot cache. * None of the dquots should really be busy at this point. */ if (mp->m_quotainfo) { while ((ndquots = xfs_qm_dqpurge_all(mp, XFS_QMOPT_UQUOTA| XFS_QMOPT_GQUOTA| XFS_QMOPT_UMOUNTING))) { delay(ndquots * 10); } }
/* * Flush out the log synchronously so that we know for sure * that nothing is pinned. This is important because bflush() * will skip pinned buffers. */ xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); xfs_binval(mp->m_ddev_targ); if (mp->m_rtdev != NODEV) { xfs_binval(mp->m_rtdev_targ); }
xfs_unmountfs_writesb(mp);
xfs_log_unmount(mp); /* Done! No more fs ops. */
xfs_freesb(mp);
/* * All inodes from this mount point should be freed. */ ASSERT(mp->m_inodes == NULL);
/* * We may have bufs that are in the process of getting written still. * We must wait for the I/O completion of those. The sync flag here * does a two pass iteration thru the bufcache. */ if (XFS_FORCED_SHUTDOWN(mp)) { (void)xfs_incore_relse(&mp->m_ddev_targ, 0, 1); /* synchronous*/ } xfs_unmountfs_close(mp, vfs_flags, cr); if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) xfs_uuid_unmount(mp);
#if defined(DEBUG) || defined(INDUCE_IO_ERROR) /* * clear all error tags on this filesystem */ bcopy(&(XFS_MTOVFS(mp)->vfs_fsid), &fsid, sizeof(int64_t)); (void) xfs_errortag_clearall_umount(fsid, mp->m_fsname, 0); #endif
cxfs_unmount(mp); xfs_mount_free(mp, 1); return 0; }
void xfs_unmountfs_close(xfs_mount_t *mp, int vfs_flags, struct cred *cr) { if (mp->m_ddev_targ.pb_targ) linvfs_release_buftarg(&mp->m_ddev_targ); if (mp->m_rtdev_targ.pb_targ) linvfs_release_buftarg(&mp->m_rtdev_targ); if (mp->m_logdev_targ.pb_targ && mp->m_logdev_targ.pb_targ != mp->m_ddev_targ.pb_targ) linvfs_release_buftarg(&mp->m_logdev_targ); }
int xfs_unmountfs_writesb(xfs_mount_t *mp) { xfs_buf_t *sbp; xfs_sb_t *sb; int error = 0;
/* * skip superblock write if fs is read-only, or * if we are doing a forced umount. */ sbp = xfs_getsb(mp, 0); if (!(XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY || XFS_FORCED_SHUTDOWN(mp))) { /* * mark shared-readonly if desired */ sb = XFS_BUF_TO_SBP(sbp); if (mp->m_mk_sharedro) { if (!(sb->sb_flags & XFS_SBF_READONLY)) sb->sb_flags |= XFS_SBF_READONLY; if (!XFS_SB_VERSION_HASSHARED(sb)) XFS_SB_VERSION_ADDSHARED(sb); xfs_fs_cmn_err(CE_NOTE, mp, "Unmounting, marking shared read-only"); } XFS_BUF_UNDONE(sbp); XFS_BUF_UNREAD(sbp); XFS_BUF_UNDELAYWRITE(sbp); XFS_BUF_WRITE(sbp); XFS_BUF_UNASYNC(sbp); ASSERT(XFS_BUF_TARGET(sbp) == mp->m_dev); xfsbdstrat(mp, sbp); /* Nevermind errors we might get here. */ error = xfs_iowait(sbp); if (error) xfs_ioerror_alert("xfs_unmountfs_writesb", mp, sbp, XFS_BUF_ADDR(sbp)); if (error && mp->m_mk_sharedro) xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly"); } xfs_buf_relse(sbp); return (error); }
/* * xfs_mod_sb() can be used to copy arbitrary changes to the * in-core superblock into the superblock buffer to be logged. * It does not provide the higher level of locking that is * needed to protect the in-core superblock from concurrent * access. */ void xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) { xfs_buf_t *bp; int first; int last; xfs_mount_t *mp; xfs_sb_t *sbp; xfs_sb_field_t f; ASSERT(fields); if (!fields) return; mp = tp->t_mountp; bp = xfs_trans_getsb(tp, mp, 0); sbp = XFS_BUF_TO_SBP(bp); first = sizeof(xfs_sb_t); last = 0; /* translate/copy */ xfs_xlatesb(XFS_BUF_PTR(bp), &(mp->m_sb), -1, ARCH_CONVERT, fields);
/* find modified range */
f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); ASSERT((1LL << f) & XFS_SB_MOD_BITS); first = xfs_sb_info[f].offset;
f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); ASSERT((1LL << f) & XFS_SB_MOD_BITS); last = xfs_sb_info[f + 1].offset - 1; xfs_trans_log_buf(tp, bp, first, last); }
/* * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply * a delta to a specified field in the in-core superblock. Simply * switch on the field indicated and apply the delta to that field. * Fields are not allowed to dip below zero, so if the delta would * do this do not apply it and return EINVAL. * * The SB_LOCK must be held when this routine is called. */ STATIC int xfs_mod_incore_sb_unlocked(xfs_mount_t *mp, xfs_sb_field_t field, int delta, int rsvd) { int scounter; /* short counter for 32 bit fields */ long long lcounter; /* long counter for 64 bit fields */ long long res_used, rem;
/* * With the in-core superblock spin lock held, switch * on the indicated field. Apply the delta to the * proper field. If the fields value would dip below * 0, then do not apply the delta and return EINVAL. */ switch (field) { case XFS_SBS_ICOUNT: lcounter = (long long)mp->m_sb.sb_icount; lcounter += delta; if (lcounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_icount = lcounter; return (0); case XFS_SBS_IFREE: lcounter = (long long)mp->m_sb.sb_ifree; lcounter += delta; if (lcounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_ifree = lcounter; return (0); case XFS_SBS_FDBLOCKS:
lcounter = (long long)mp->m_sb.sb_fdblocks; res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
if (delta > 0) { /* Putting blocks back */ if (res_used > delta) { mp->m_resblks_avail += delta; } else { rem = delta - res_used; mp->m_resblks_avail = mp->m_resblks; lcounter += rem; } } else { /* Taking blocks away */
lcounter += delta;
/* * If were out of blocks, use any available reserved blocks if * were allowed to. */
if (lcounter < 0) { if (rsvd) { lcounter = (long long)mp->m_resblks_avail + delta; if (lcounter < 0) { return (XFS_ERROR(ENOSPC)); } mp->m_resblks_avail = lcounter; return (0); } else { /* not reserved */ return (XFS_ERROR(ENOSPC)); } } }
mp->m_sb.sb_fdblocks = lcounter; return (0); case XFS_SBS_FREXTENTS: lcounter = (long long)mp->m_sb.sb_frextents; lcounter += delta; if (lcounter < 0) { return (XFS_ERROR(ENOSPC)); } mp->m_sb.sb_frextents = lcounter; return (0); case XFS_SBS_DBLOCKS: lcounter = (long long)mp->m_sb.sb_dblocks; lcounter += delta; if (lcounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_dblocks = lcounter; return (0); case XFS_SBS_AGCOUNT: scounter = mp->m_sb.sb_agcount; scounter += delta; if (scounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_agcount = scounter; return (0); case XFS_SBS_IMAX_PCT: scounter = mp->m_sb.sb_imax_pct; scounter += delta; if (scounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_imax_pct = scounter; return (0); case XFS_SBS_REXTSIZE: scounter = mp->m_sb.sb_rextsize; scounter += delta; if (scounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_rextsize = scounter; return (0); case XFS_SBS_RBMBLOCKS: scounter = mp->m_sb.sb_rbmblocks; scounter += delta; if (scounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_rbmblocks = scounter; return (0); case XFS_SBS_RBLOCKS: lcounter = (long long)mp->m_sb.sb_rblocks; lcounter += delta; if (lcounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_rblocks = lcounter; return (0); case XFS_SBS_REXTENTS: lcounter = (long long)mp->m_sb.sb_rextents; lcounter += delta; if (lcounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_rextents = lcounter; return (0); case XFS_SBS_REXTSLOG: scounter = mp->m_sb.sb_rextslog; scounter += delta; if (scounter < 0) { ASSERT(0); return (XFS_ERROR(EINVAL)); } mp->m_sb.sb_rextslog = scounter; return (0); default: ASSERT(0); return (XFS_ERROR(EINVAL)); } }
/* * xfs_mod_incore_sb() is used to change a field in the in-core * superblock structure by the specified delta. This modification * is protected by the SB_LOCK. Just use the xfs_mod_incore_sb_unlocked() * routine to do the work. */ int xfs_mod_incore_sb(xfs_mount_t *mp, xfs_sb_field_t field, int delta, int rsvd) { int s; int status;
s = XFS_SB_LOCK(mp); status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); XFS_SB_UNLOCK(mp, s); return (status); }
/* * xfs_mod_incore_sb_batch() is used to change more than one field * in the in-core superblock structure at a time. This modification * is protected by a lock internal to this module. The fields and * changes to those fields are specified in the array of xfs_mod_sb * structures passed in. * * Either all of the specified deltas will be applied or none of * them will. If any modified field dips below 0, then all modifications * will be backed out and EINVAL will be returned. */ int xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) { int s; int status=0; xfs_mod_sb_t *msbp;
/* * Loop through the array of mod structures and apply each * individually. If any fail, then back out all those * which have already been applied. Do all of this within * the scope of the SB_LOCK so that all of the changes will * be atomic. */ s = XFS_SB_LOCK(mp); msbp = &msb[0]; for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { /* * Apply the delta at index n. If it fails, break * from the loop so we'll fall into the undo loop * below. */ status = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, msbp->msb_delta, rsvd); if (status != 0) { break; } }
/* * If we didn't complete the loop above, then back out * any changes made to the superblock. If you add code * between the loop above and here, make sure that you * preserve the value of status. Loop back until * we step below the beginning of the array. Make sure * we don't touch anything back there. */ if (status != 0) { msbp--; while (msbp >= msb) { status = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, -(msbp->msb_delta), rsvd); ASSERT(status == 0); msbp--; } } XFS_SB_UNLOCK(mp, s); return (status); }
/* * xfs_getsb() is called to obtain the buffer for the superblock. * The buffer is returned locked and read in from disk. * The buffer should be released with a call to xfs_brelse(). * * If the flags parameter is BUF_TRYLOCK, then we'll only return * the superblock buffer if it can be locked without sleeping. * If it can't then we'll return NULL. */ xfs_buf_t * xfs_getsb(xfs_mount_t *mp, int flags) { xfs_buf_t *bp; ASSERT(mp->m_sb_bp != NULL); bp = mp->m_sb_bp; if (flags & XFS_BUF_TRYLOCK) { if (!XFS_BUF_CPSEMA(bp)) { return NULL; } } else { XFS_BUF_PSEMA(bp, PRIBIO); } XFS_BUF_HOLD(bp); ASSERT(XFS_BUF_ISDONE(bp)); return (bp); }
/* * Used to free the superblock along various error paths. */ void xfs_freesb( xfs_mount_t *mp) { xfs_buf_t *bp;
/* * Use xfs_getsb() so that the buffer will be locked * when we call nfreerbuf(). */ bp = xfs_getsb(mp, 0); bp->pb_flags &= ~PBF_FS_MANAGED; xfs_buf_relse(bp); mp->m_sb_bp = NULL; }
/* * See if the uuid is unique among mounted xfs filesystems. * Mount fails if UUID is nil or a FS with the same UUID is already * mounted */ STATIC int xfs_uuid_mount(xfs_mount_t *mp) { int hole; int i; if (uuid_is_nil(&mp->m_sb.sb_uuid)) { cmn_err(CE_WARN, "XFS: Filesystem %s has nil UUID - can't mount", mp->m_fsname); return -1; } mutex_lock(&xfs_uuidtabmon, PVFS); for (i = 0, hole = -1; i < xfs_uuidtab_size; i++) { if (uuid_is_nil(&xfs_uuidtab[i])) { hole = i; continue; } if (uuid_equal(&mp->m_sb.sb_uuid, &xfs_uuidtab[i])) { cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", mp->m_fsname); mutex_unlock(&xfs_uuidtabmon); return -1; } } if (hole < 0) { xfs_uuidtab = kmem_realloc(xfs_uuidtab, (xfs_uuidtab_size + 1) * sizeof(*xfs_uuidtab), xfs_uuidtab_size * sizeof(*xfs_uuidtab), KM_SLEEP); hole = xfs_uuidtab_size++; } xfs_uuidtab[hole] = mp->m_sb.sb_uuid; mutex_unlock(&xfs_uuidtabmon); return 0; }
/* * Remove filesystem from the uuid table. */ STATIC void xfs_uuid_unmount(xfs_mount_t *mp) { int i;
mutex_lock(&xfs_uuidtabmon, PVFS); for (i = 0; i < xfs_uuidtab_size; i++) { if (uuid_is_nil(&xfs_uuidtab[i])) continue; if (!uuid_equal(&mp->m_sb.sb_uuid, &xfs_uuidtab[i])) continue; uuid_create_nil(&xfs_uuidtab[i]); break; } ASSERT(i < xfs_uuidtab_size); mutex_unlock(&xfs_uuidtabmon); }
/* * When xfsquotas isn't installed and the superblock had quotas, we need to * clear the quotaflags from superblock. */ STATIC void xfs_mount_reset_sbqflags( xfs_mount_t *mp) { xfs_trans_t *tp; int s;
mp->m_qflags = 0; /* * It is OK to look at sb_qflags here in mount path, * without SB_LOCK. */ if (mp->m_sb.sb_qflags == 0) return; s = XFS_SB_LOCK(mp); mp->m_sb.sb_qflags = 0; XFS_SB_UNLOCK(mp, s);
/* * if the fs is readonly, let the incore superblock run * with quotas off but don't flush the update out to disk */ if (XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY) return; #ifdef QUOTADEBUG xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes"); #endif tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, XFS_DEFAULT_LOG_COUNT)) { xfs_trans_cancel(tp, 0); return; } xfs_mod_sb(tp, XFS_SB_QFLAGS); (void)xfs_trans_commit(tp, 0, NULL); }
/* * Used to log changes to the superblock unit and width fields which could * be altered by the mount options. Only the first superblock is updated. */ STATIC void xfs_mount_log_sbunit( xfs_mount_t *mp, __int64_t fields) { xfs_trans_t *tp;
ASSERT(fields & (XFS_SB_UNIT|XFS_SB_WIDTH|XFS_SB_UUID));
tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); if (xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, XFS_DEFAULT_LOG_COUNT)) { xfs_trans_cancel(tp, 0); return; } xfs_mod_sb(tp, fields); (void)xfs_trans_commit(tp, 0, NULL); }
/* Functions to lock access out of the filesystem for forced * shutdown or snapshot. */
void xfs_start_freeze( xfs_mount_t *mp, int level) { int s = mutex_spinlock(&mp->m_freeze_lock);
mp->m_frozen = level; mutex_spinunlock(&mp->m_freeze_lock, s);
if (level == XFS_FREEZE_TRANS) { while (atomic_read(&mp->m_active_trans) > 0) delay(100); } }
void xfs_finish_freeze( xfs_mount_t *mp) { int s = mutex_spinlock(&mp->m_freeze_lock);
if (mp->m_frozen) { mp->m_frozen = 0; sv_broadcast(&mp->m_wait_unfreeze); }
mutex_spinunlock(&mp->m_freeze_lock, s); }
void xfs_check_frozen( xfs_mount_t *mp, bhv_desc_t *bdp, int ioflag, int level) { int s; int do_lock = 0;
if (!mp->m_frozen) { if (level == XFS_FREEZE_TRANS) atomic_inc(&mp->m_active_trans); return; }
s = mutex_spinlock(&mp->m_freeze_lock);
if (mp->m_frozen < level) { mutex_spinunlock(&mp->m_freeze_lock, s); if (level == XFS_FREEZE_TRANS) atomic_inc(&mp->m_active_trans); return; }
if ((level == XFS_FREEZE_WRITE) && (ioflag & IO_ISLOCKED)) { xfs_rwunlock(bdp, (ioflag & IO_DIRECT) ? VRWLOCK_WRITE_DIRECT : VRWLOCK_WRITE); do_lock = 1; }
sv_wait(&mp->m_wait_unfreeze, PINOD, &mp->m_freeze_lock, s); if (level == XFS_FREEZE_TRANS) atomic_inc(&mp->m_active_trans);
if (do_lock) { xfs_rwlock(bdp, (ioflag & IO_DIRECT) ? VRWLOCK_WRITE_DIRECT : VRWLOCK_WRITE); } }
|