Viewing file: xfs_iget.c (25.59 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ */
#include <xfs.h>
/* * Initialize the inode hash table for the newly mounted file system. * * mp -- this is the mount point structure for the file system being * initialized */ void xfs_ihash_init(xfs_mount_t *mp) { int i;
mp->m_ihsize = XFS_BUCKETS(mp); mp->m_ihash = (xfs_ihash_t *)kmem_zalloc(mp->m_ihsize * sizeof(xfs_ihash_t), KM_SLEEP); ASSERT(mp->m_ihash != NULL); for (i = 0; i < mp->m_ihsize; i++) { mrinit(&(mp->m_ihash[i].ih_lock),"xfshash"); } }
/* * Free up structures allocated by xfs_ihash_init, at unmount time. */ void xfs_ihash_free(xfs_mount_t *mp) { int i;
for (i = 0; i < mp->m_ihsize; i++) mrfree(&mp->m_ihash[i].ih_lock); kmem_free(mp->m_ihash, mp->m_ihsize*sizeof(xfs_ihash_t)); mp->m_ihash = NULL; }
/* * Initialize the inode cluster hash table for the newly mounted file system. * * mp -- this is the mount point structure for the file system being * initialized */ void xfs_chash_init(xfs_mount_t *mp) { int i;
/* * m_chash size is based on m_ihash * with a minimum of 37 entries */ mp->m_chsize = (XFS_BUCKETS(mp)) / (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog); if (mp->m_chsize < 37) { mp->m_chsize = 37; } mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize * sizeof(xfs_chash_t), KM_SLEEP); ASSERT(mp->m_chash != NULL);
for (i = 0; i < mp->m_chsize; i++) { spinlock_init(&mp->m_chash[i].ch_lock,"xfshash"); } }
/* * Free up structures allocated by xfs_chash_init, at unmount time. */ void xfs_chash_free(xfs_mount_t *mp) { int i;
for (i = 0; i < mp->m_chsize; i++) { spinlock_destroy(&mp->m_chash[i].ch_lock); }
kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t)); mp->m_chash = NULL; }
static inline void xfs_iget_vnode_init( xfs_mount_t *mp, vnode_t *vp, xfs_inode_t *ip) { vp->v_vfsp = XFS_MTOVFS(mp); vp->v_inode = LINVFS_GET_IP(vp); vp->v_type = IFTOVT(ip->i_d.di_mode); }
/* * Look up an inode by number in the given file system. * The inode is looked up in the hash table for the file system * represented by the mount point parameter mp. Each bucket of * the hash table is guarded by an individual semaphore. * * If the inode is found in the hash table, its corresponding vnode * is obtained with a call to vn_get(). This call takes care of * coordination with the reclamation of the inode and vnode. Note * that the vmap structure is filled in while holding the hash lock. * This gives us the state of the inode/vnode when we found it and * is used for coordination in vn_get(). * * If it is not in core, read it in from the file system's device and * add the inode into the hash table. * * The inode is locked according to the value of the lock_flags parameter. * This flag parameter indicates how and if the inode's IO lock and inode lock * should be taken. * * mp -- the mount point structure for the current file system. It points * to the inode hash table. * tp -- a pointer to the current transaction if there is one. This is * simply passed through to the xfs_iread() call. * ino -- the number of the inode desired. This is the unique identifier * within the file system for the inode being requested. * lock_flags -- flags indicating how to lock the inode. See the comment * for xfs_ilock() for a list of valid values. * bno -- the block number starting the buffer containing the inode, * if known (as by bulkstat), else 0. */ int xfs_iget_core( vnode_t *vp, xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, uint lock_flags, xfs_inode_t **ipp, xfs_daddr_t bno) { xfs_ihash_t *ih; xfs_inode_t *ip; xfs_inode_t *iq; vnode_t *inode_vp; ulong version; int error; /* REFERENCED */ int newnode; xfs_chash_t *ch; xfs_chashlist_t *chl, *chlnew; SPLDECL(s);
ih = XFS_IHASH(mp, ino);
again: mraccess(&ih->ih_lock);
for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { if (ip->i_ino == ino) {
inode_vp = XFS_ITOV_NULL(ip);
if (inode_vp == NULL) { if (ip->i_flags & XFS_IRECLAIM) { mrunlock(&ih->ih_lock); delay(1); XFS_STATS_INC(xfsstats.xs_ig_frecycle);
goto again; } xfs_iget_vnode_init(mp, vp, ip);
vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
bhv_desc_init(&(ip->i_bhv_desc), ip, vp, &xfs_vnodeops); vn_bhv_insert_initial(VN_BHV_HEAD(vp), &(ip->i_bhv_desc));
XFS_STATS_INC(xfsstats.xs_ig_found);
mrunlock(&ih->ih_lock); goto finish_inode;
} else if (vp != inode_vp) { struct inode *inode = LINVFS_GET_IP(inode_vp);
if (inode->i_state & (I_FREEING | I_CLEAR)) { mrunlock(&ih->ih_lock); delay(1); XFS_STATS_INC(xfsstats.xs_ig_frecycle);
goto again; } /* Chances are the other vnode (the one in the inode) is being torn * down right now, and we landed on top of it. Question is, what do * we do? Unhook the old inode and hook up the new one? */ cmn_err(CE_PANIC, "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p", inode_vp, vp); BUG(); }
/* * Inode cache hit: if ip is not at the front of * its hash chain, move it there now. * Do this with the lock held for update, but * do statistics after releasing the lock. */ if (ip->i_prevp != &ih->ih_next && mrtrypromote(&ih->ih_lock)) {
if ((iq = ip->i_next)) { iq->i_prevp = ip->i_prevp; }
*ip->i_prevp = iq; iq = ih->ih_next; iq->i_prevp = &ip->i_next; ip->i_next = iq; ip->i_prevp = &ih->ih_next; ih->ih_next = ip; }
mrunlock(&ih->ih_lock);
XFS_STATS_INC(xfsstats.xs_ig_found);
/* * Make sure the vnode and the inode are hooked up */ xfs_iget_vnode_init(mp, vp, ip);
finish_inode: if (lock_flags != 0) { xfs_ilock(ip, lock_flags); }
newnode = (ip->i_d.di_mode == 0); if (newnode) { ip->i_flags &= ~XFS_IRECLAIM; xfs_iocore_inode_reinit(ip); } vn_trace_exit(vp, "xfs_iget.found", (inst_t *)__return_address); goto return_ip; } }
/* * Inode cache miss: save the hash chain version stamp and unlock * the chain, so we don't deadlock in vn_alloc. */ XFS_STATS_INC(xfsstats.xs_ig_missed);
version = ih->ih_version;
mrunlock(&ih->ih_lock);
/* * Read the disk inode attributes into a new inode structure and get * a new vnode for it. Initialize the inode lock so we can idestroy * it soon if it's a dup. This should also initialize i_dev, i_ino, * i_bno, i_mount, and i_index. */ error = xfs_iread(mp, tp, ino, &ip, bno); if (error) { return error; }
/* * Vnode provided by vn_initialize. */
xfs_iget_vnode_init(mp, vp, ip);
vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
if (vp->v_fbhv == NULL) { bhv_desc_init(&(ip->i_bhv_desc), ip, vp, &xfs_vnodeops); vn_bhv_insert_initial(VN_BHV_HEAD(vp), &(ip->i_bhv_desc)); }
xfs_inode_lock_init(ip, vp); xfs_iocore_inode_init(ip);
if (lock_flags != 0) { xfs_ilock(ip, lock_flags); }
/* * Put ip on its hash chain, unless someone else hashed a duplicate * after we released the hash lock. */ mrupdate(&ih->ih_lock);
if (ih->ih_version != version) { for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) { if (iq->i_ino == ino) { mrunlock(&ih->ih_lock); xfs_idestroy(ip);
XFS_STATS_INC(xfsstats.xs_ig_dup); goto again; } } }
/* * These values _must_ be set before releasing ihlock! */ ip->i_hash = ih; if ((iq = ih->ih_next)) { iq->i_prevp = &ip->i_next; } ip->i_next = iq; ip->i_prevp = &ih->ih_next; ih->ih_next = ip; ip->i_udquot = ip->i_gdquot = NULL; ih->ih_version++;
/* * put ip on its cluster's hash chain */ ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL && ip->i_cnext == NULL);
chlnew = NULL; ch = XFS_CHASH(mp, ip->i_blkno); chlredo: s = mutex_spinlock(&ch->ch_lock); for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) { if (chl->chl_blkno == ip->i_blkno) {
/* insert this inode into the doubly-linked list * where chl points */ if ((iq = chl->chl_ip)) { ip->i_cprev = iq->i_cprev; iq->i_cprev->i_cnext = ip; iq->i_cprev = ip; ip->i_cnext = iq; } else { ip->i_cnext = ip; ip->i_cprev = ip; } chl->chl_ip = ip; ip->i_chash = chl; break; } }
/* no hash list found for this block; add a new hash list */ if (chl == NULL) { if (chlnew == NULL) { mutex_spinunlock(&ch->ch_lock, s); ASSERT(xfs_chashlist_zone != NULL); chlnew = (xfs_chashlist_t *) kmem_zone_zalloc(xfs_chashlist_zone, KM_SLEEP); ASSERT(chlnew != NULL); goto chlredo; } else { ip->i_cnext = ip; ip->i_cprev = ip; ip->i_chash = chlnew; chlnew->chl_ip = ip; chlnew->chl_blkno = ip->i_blkno; chlnew->chl_next = ch->ch_list; ch->ch_list = chlnew; chlnew = NULL; } } else { if (chlnew != NULL) { kmem_zone_free(xfs_chashlist_zone, chlnew); } }
mutex_spinunlock(&ch->ch_lock, s);
mrunlock(&ih->ih_lock);
/* * Link ip to its mount and thread it on the mount's inode list. */ XFS_MOUNT_ILOCK(mp); if ((iq = mp->m_inodes)) { ASSERT(iq->i_mprev->i_mnext == iq); ip->i_mprev = iq->i_mprev; iq->i_mprev->i_mnext = ip; iq->i_mprev = ip; ip->i_mnext = iq; } else { ip->i_mnext = ip; ip->i_mprev = ip; } mp->m_inodes = ip;
XFS_MOUNT_IUNLOCK(mp);
newnode = 1;
return_ip: ASSERT(ip->i_df.if_ext_max == XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) == ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
*ipp = ip;
/* Update the linux inode */ error = vn_revalidate(vp, ATTR_COMM|ATTR_LAZY);
return 0; }
/* * The 'normal' internal xfs_iget, if needed it will * 'allocate', or 'get', the vnode. */ int xfs_iget( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, uint lock_flags, xfs_inode_t **ipp, xfs_daddr_t bno) { struct inode *inode; vnode_t *vp = NULL; int error;
retry: XFS_STATS_INC(xfsstats.xs_ig_attempts);
if ((inode = icreate(XFS_MTOVFS(mp)->vfs_super, ino, tp ? SLAB_NOFS : SLAB_KERNEL))) { bhv_desc_t *bdp; xfs_inode_t *ip; int newnode;
vp = LINVFS_GET_VN_ADDRESS(inode); if (inode->i_state & I_NEW) { vn_initialize(XFS_MTOVFS(mp), inode, 0); error = xfs_iget_core(vp, mp, tp, ino, lock_flags, ipp, bno); if (error) make_bad_inode(inode);
unlock_new_inode(inode); if (error) iput(inode); } else { if (vp->v_flag & (VINACT | VRECLM)) { vn_wait(vp); iput(inode); goto retry; }
bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops); ip = XFS_BHVTOI(bdp); if (lock_flags != 0) { xfs_ilock(ip, lock_flags); } newnode = (ip->i_d.di_mode == 0); if (newnode) { ip->i_flags &= ~XFS_IRECLAIM; xfs_iocore_inode_reinit(ip); } vn_revalidate(vp, ATTR_COMM|ATTR_LAZY); XFS_STATS_INC(xfsstats.xs_ig_found); *ipp = ip; error = 0; } } else error = ENOMEM; /* If we got no inode we are out of memory */
return error; }
/* * A 'special' interface to xfs_iget, where the * vnode is already allocated. */ int xfs_vn_iget( vfs_t *vfsp, struct vnode *vp, xfs_ino_t ino) { xfs_inode_t *ip; xfs_mount_t *mp = XFS_BHVTOM(vfsp->vfs_fbhv); int error;
error = xfs_iget_core(vp, mp, NULL, ino, 0, &ip, 0);
return error; }
/* * Do the setup for the various locks within the incore inode. */ void xfs_inode_lock_init( xfs_inode_t *ip, vnode_t *vp) { mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI, "xfsino", (long)vp->v_number); mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number); #ifdef NOTYET mutex_init(&ip->i_range_lock.r_spinlock, MUTEX_SPIN, "xrange"); #endif /* NOTYET */ init_sema(&ip->i_flock, 1, "xfsfino", vp->v_number); init_sv(&ip->i_pinsema, SV_DEFAULT, "xfspino", vp->v_number); spinlock_init(&ip->i_ipinlock, "xfs_ipin"); }
/* * Look for the inode corresponding to the given ino in the hash table. * If it is there and its i_transp pointer matches tp, return it. * Otherwise, return NULL. */ xfs_inode_t * xfs_inode_incore(xfs_mount_t *mp, xfs_ino_t ino, xfs_trans_t *tp) { xfs_ihash_t *ih; xfs_inode_t *ip; xfs_inode_t *iq;
ih = XFS_IHASH(mp, ino); mraccess(&ih->ih_lock); for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) { if (ip->i_ino == ino) { /* * If we find it and tp matches, return it. * Also move it to the front of the hash list * if we find it and it is not already there. * Otherwise break from the loop and return * NULL. */ if (ip->i_transp == tp) { if (ip->i_prevp != &ih->ih_next && mrtrypromote(&ih->ih_lock)) { if ((iq = ip->i_next)) { iq->i_prevp = ip->i_prevp; } *ip->i_prevp = iq; iq = ih->ih_next; iq->i_prevp = &ip->i_next; ip->i_next = iq; ip->i_prevp = &ih->ih_next; ih->ih_next = ip; } mrunlock(&ih->ih_lock); return (ip); } break; } } mrunlock(&ih->ih_lock); return (NULL); }
/* * Decrement reference count of an inode structure and unlock it. * * ip -- the inode being released * lock_flags -- this parameter indicates the inode's locks to be * to be released. See the comment on xfs_iunlock() for a list * of valid values. */ void xfs_iput(xfs_inode_t *ip, uint lock_flags) { vnode_t *vp = XFS_ITOV(ip);
vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
xfs_iunlock(ip, lock_flags);
VN_RELE(vp); }
/* * This routine embodies the part of the reclaim code that pulls * the inode from the inode hash table and the mount structure's * inode list. * This should only be called from xfs_reclaim(). */ void xfs_ireclaim(xfs_inode_t *ip) { vnode_t *vp;
/* * Remove from old hash list and mount list. */ XFS_STATS_INC(xfsstats.xs_ig_reclaims);
xfs_iextract(ip);
/* * Here we do a spurious inode lock in order to coordinate with * xfs_sync(). This is because xfs_sync() references the inodes * in the mount list without taking references on the corresponding * vnodes. We make that OK here by ensuring that we wait until * the inode is unlocked in xfs_sync() before we go ahead and * free it. We get both the regular lock and the io lock because * the xfs_sync() code may need to drop the regular one but will * still hold the io lock. */ xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
/* * Release dquots (and their references) if any. An inode may escape * xfs_inactive and get here via vn_alloc->vn_reclaim path. */ if (ip->i_udquot || ip->i_gdquot) { xfs_qm_dqdettach_inode(ip); } /* * Pull our behavior descriptor from the vnode chain. */ vp = XFS_ITOV_NULL(ip); if (vp) { vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip)); } /* * Free all memory associated with the inode. */ xfs_idestroy(ip); }
/* * This routine removes an about-to-be-destroyed inode from * all of the lists in which it is lcoated with the exception * of the behavior chain. It is used by xfs_ireclaim and * by cxfs relocation cocde, in which case, we are removing * the xfs_inode but leaving the vnode alone since it has * been transformed into a client vnode. */ void xfs_iextract( xfs_inode_t *ip) { xfs_ihash_t *ih; xfs_inode_t *iq; xfs_mount_t *mp; xfs_chash_t *ch; xfs_chashlist_t *chl, *chm; SPLDECL(s); ih = ip->i_hash; mrupdate(&ih->ih_lock); if ((iq = ip->i_next)) { iq->i_prevp = ip->i_prevp; } *ip->i_prevp = iq;
/* * Remove from cluster hash list * 1) delete the chashlist if this is the last inode on the chashlist * 2) unchain from list of inodes * 3) point chashlist->chl_ip to 'chl_next' if to this inode. */ mp = ip->i_mount; ch = XFS_CHASH(mp, ip->i_blkno); s = mutex_spinlock(&ch->ch_lock);
if (ip->i_cnext == ip) { /* Last inode on chashlist */ ASSERT(ip->i_cnext == ip && ip->i_cprev == ip); ASSERT(ip->i_chash != NULL); chm=NULL; for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) { if (chl->chl_blkno == ip->i_blkno) { if (chm == NULL) { /* first item on the list */ ch->ch_list = chl->chl_next; } else { chm->chl_next = chl->chl_next; } kmem_zone_free(xfs_chashlist_zone, chl); break; } else { ASSERT(chl->chl_ip != ip); chm = chl; } } ASSERT_ALWAYS(chl != NULL); } else { /* delete one inode from a non-empty list */ iq = ip->i_cnext; iq->i_cprev = ip->i_cprev; ip->i_cprev->i_cnext = iq; if (ip->i_chash->chl_ip == ip) { ip->i_chash->chl_ip = iq; } ip->i_chash = __return_address; ip->i_cprev = __return_address; ip->i_cnext = __return_address; } mutex_spinunlock(&ch->ch_lock, s); mrunlock(&ih->ih_lock);
/* * Remove from mount's inode list. */ XFS_MOUNT_ILOCK(mp); ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL)); iq = ip->i_mnext; iq->i_mprev = ip->i_mprev; ip->i_mprev->i_mnext = iq;
/* * Fix up the head pointer if it points to the inode being deleted. */ if (mp->m_inodes == ip) { if (ip == iq) { mp->m_inodes = NULL; } else { mp->m_inodes = iq; } } mp->m_ireclaims++; XFS_MOUNT_IUNLOCK(mp); }
/* * This is a wrapper routine around the xfs_ilock() routine * used to centralize some grungy code. It is used in places * that wish to lock the inode solely for reading the extents. * The reason these places can't just call xfs_ilock(SHARED) * is that the inode lock also guards to bringing in of the * extents from disk for a file in b-tree format. If the inode * is in b-tree format, then we need to lock the inode exclusively * until the extents are read in. Locking it exclusively all * the time would limit our parallelism unnecessarily, though. * What we do instead is check to see if the extents have been * read in yet, and only lock the inode exclusively if they * have not. * * The function returns a value which should be given to the * corresponding xfs_iunlock_map_shared(). This value is * the mode in which the lock was actually taken. */ uint xfs_ilock_map_shared( xfs_inode_t *ip) { uint lock_mode;
if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) && ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) { lock_mode = XFS_ILOCK_EXCL; } else { lock_mode = XFS_ILOCK_SHARED; }
xfs_ilock(ip, lock_mode);
return lock_mode; }
/* * This is simply the unlock routine to go with xfs_ilock_map_shared(). * All it does is call xfs_iunlock() with the given lock_mode. */ void xfs_iunlock_map_shared( xfs_inode_t *ip, unsigned int lock_mode) { xfs_iunlock(ip, lock_mode); }
/* * The xfs inode contains 2 locks: a multi-reader lock called the * i_iolock and a multi-reader lock called the i_lock. This routine * allows either or both of the locks to be obtained. * * The 2 locks should always be ordered so that the IO lock is * obtained first in order to prevent deadlock. * * ip -- the inode being locked * lock_flags -- this parameter indicates the inode's locks * to be locked. It can be: * XFS_IOLOCK_SHARED, * XFS_IOLOCK_EXCL, * XFS_ILOCK_SHARED, * XFS_ILOCK_EXCL, * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED, * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL, * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED, * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL */ void xfs_ilock(xfs_inode_t *ip, uint lock_flags) { /* * You can't set both SHARED and EXCL for the same lock, * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, * and XFS_ILOCK_EXCL are valid values to set in lock_flags. */ ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
if (lock_flags & XFS_IOLOCK_EXCL) { mrupdatef(&ip->i_iolock, PLTWAIT); } else if (lock_flags & XFS_IOLOCK_SHARED) { mraccessf(&ip->i_iolock, PLTWAIT); } if (lock_flags & XFS_ILOCK_EXCL) { mrupdatef(&ip->i_lock, PLTWAIT); } else if (lock_flags & XFS_ILOCK_SHARED) { mraccessf(&ip->i_lock, PLTWAIT); } #ifdef XFS_ILOCK_TRACE xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)return_address); #endif }
/* * This is just like xfs_ilock(), except that the caller * is guaranteed not to sleep. It returns 1 if it gets * the requested locks and 0 otherwise. If the IO lock is * obtained but the inode lock cannot be, then the IO lock * is dropped before returning. * * ip -- the inode being locked * lock_flags -- this parameter indicates the inode's locks to be * to be locked. See the comment for xfs_ilock() for a list * of valid values. * */ int xfs_ilock_nowait(xfs_inode_t *ip, uint lock_flags) { int iolocked; int ilocked;
/* * You can't set both SHARED and EXCL for the same lock, * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, * and XFS_ILOCK_EXCL are valid values to set in lock_flags. */ ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
iolocked = 0; if (lock_flags & XFS_IOLOCK_EXCL) { iolocked = mrtryupdate(&ip->i_iolock); if (!iolocked) { return 0; } } else if (lock_flags & XFS_IOLOCK_SHARED) { iolocked = mrtryaccess(&ip->i_iolock); if (!iolocked) { return 0; } } if (lock_flags & XFS_ILOCK_EXCL) { ilocked = mrtryupdate(&ip->i_lock); if (!ilocked) { if (iolocked) { mrunlock(&ip->i_iolock); } return 0; } } else if (lock_flags & XFS_ILOCK_SHARED) { ilocked = mrtryaccess(&ip->i_lock); if (!ilocked) { if (iolocked) { mrunlock(&ip->i_iolock); } return 0; } } #ifdef XFS_ILOCK_TRACE xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address); #endif return 1; }
/* * xfs_iunlock() is used to drop the inode locks acquired with * xfs_ilock() and xfs_ilock_nowait(). The caller must pass * in the flags given to xfs_ilock() or xfs_ilock_nowait() so * that we know which locks to drop. * * ip -- the inode being unlocked * lock_flags -- this parameter indicates the inode's locks to be * to be unlocked. See the comment for xfs_ilock() for a list * of valid values for this parameter. * */ void xfs_iunlock(xfs_inode_t *ip, uint lock_flags) { /* * You can't set both SHARED and EXCL for the same lock, * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, * and XFS_ILOCK_EXCL are valid values to set in lock_flags. */ ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0); ASSERT(lock_flags != 0);
if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) { ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) || (ismrlocked(&ip->i_iolock, MR_ACCESS))); ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) || (ismrlocked(&ip->i_iolock, MR_UPDATE))); mrunlock(&ip->i_iolock); }
if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) { ASSERT(!(lock_flags & XFS_ILOCK_SHARED) || (ismrlocked(&ip->i_lock, MR_ACCESS))); ASSERT(!(lock_flags & XFS_ILOCK_EXCL) || (ismrlocked(&ip->i_lock, MR_UPDATE))); mrunlock(&ip->i_lock); }
/* * Let the AIL know that this item has been unlocked in case * it is in the AIL and anyone is waiting on it. Don't do * this if the caller has asked us not to. */ if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp != NULL) { xfs_trans_unlocked_item(ip->i_mount, (xfs_log_item_t*)(ip->i_itemp)); } #ifdef XFS_ILOCK_TRACE xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address); #endif }
/* * give up write locks. the i/o lock cannot be held nested * if it is being demoted. */ void xfs_ilock_demote(xfs_inode_t *ip, uint lock_flags) { ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)); ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
if (lock_flags & XFS_ILOCK_EXCL) { ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); mrdemote(&ip->i_lock); } if (lock_flags & XFS_IOLOCK_EXCL) { ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE)); mrdemote(&ip->i_iolock); } }
/* * The following three routines simply manage the i_flock * semaphore embedded in the inode. This semaphore synchronizes * processes attempting to flush the in-core inode back to disk. */ void xfs_iflock(xfs_inode_t *ip) { psema(&(ip->i_flock), PINOD|PLTWAIT); }
int xfs_iflock_nowait(xfs_inode_t *ip) { return (cpsema(&(ip->i_flock))); }
void xfs_ifunlock(xfs_inode_t *ip) { ASSERT(valusema(&(ip->i_flock)) <= 0); vsema(&(ip->i_flock)); }
|