Viewing file: xfs_behavior.h (14.58 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Copyright (c) 2000 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ */ #ifndef __XFS_BEHAVIOR_H__ #define __XFS_BEHAVIOR_H__
/* * Header file used to associate behaviors with virtualized objects. * * A virtualized object is an internal, virtualized representation of * OS entities such as persistent files, processes, or sockets. Examples * of virtualized objects include vnodes, vprocs, and vsockets. Often * a virtualized object is referred to simply as an "object." * * A behavior is essentially an implementation layer associated with * an object. Multiple behaviors for an object are chained together, * the order of chaining determining the order of invocation. Each * behavior of a given object implements the same set of interfaces * (e.g., the VOP interfaces). * * Behaviors may be dynamically inserted into an object's behavior chain, * such that the addition is transparent to consumers that already have * references to the object. Typically, a given behavior will be inserted * at a particular location in the behavior chain. Insertion of new * behaviors is synchronized with operations-in-progress (oip's) so that * the oip's always see a consistent view of the chain. * * The term "interpostion" is used to refer to the act of inserting * a behavior such that it interposes on (i.e., is inserted in front * of) a particular other behavior. A key example of this is when a * system implementing distributed single system image wishes to * interpose a distribution layer (providing distributed coherency) * in front of an object that is otherwise only accessed locally. * * Note that the traditional vnode/inode combination is simply a virtualized * object that has exactly one associated behavior. * * Behavior synchronization is logic which is necessary under certain * circumstances that there is no conflict between ongoing operations * traversing the behavior chain and those dunamically modifying the * behavior chain. Because behavior synchronization adds extra overhead * to virtual operation invocation, we want to restrict, as much as * we can, the requirement for this extra code, to those situations * in which it is truly necessary. * * Behavior synchronization is needed whenever there's at least one class * of object in the system for which: * 1) multiple behaviors for a given object are supported, * -- AND -- * 2a) insertion of a new behavior can happen dynamically at any time during * the life of an active object, * -- AND -- * 3a) insertion of a new behavior needs to synchronize with existing * ops-in-progress. * -- OR -- * 3b) multiple different behaviors can be dynamically inserted at * any time during the life of an active object * -- OR -- * 3c) removal of a behavior can occur at any time during the life of * an active object. * -- OR -- * 2b) removal of a behavior can occur at any time during the life of an * active object * * For now, behavior synchornization, is controlled if CELL is * defined. * * In order to allow binary compatibility with 6.5, platforms that might * support Cellular or Cluster Irix have reserved space in 6.5 in several kernel * structures (ex., kthread_t) which can be used to implement behavior * synchronization functionality. Reservation of this space is controled * by the CELL_PREPARE define. * * Note that currently, the CELL code, takes up more space than will be * available in 6.5 systems. This needs to be addressed, at some point. * * The makefile (Makefile.kernio) that is used for compiling 3rd party * drivers also defines CELL_PREPARE for the platforms that might * support Cellular or Cluster Irix. In addition, this makefile also defines * BHV_PREPARE. This causes calls to be generated to the appropriate * BHV locking code. In 6.5, these function are stubs but they will be * replaced with real locking code in CELL systems. * * Note that modifying the behavior chain due to insertion of a new behavior * is done atomically w.r.t. ops-in-progress. This implies that even if * CELL is off, a racing op-in-progress will always see a consistent * view of the chain. However, correctness is not guaranteed if an * op-in-progress is dependent on whether or not a new behavior is * inserted while it is executing. The same applies to removal * of an existing behavior. * */
#include <linux/behavior.h>
/* * Define stuff for behavior position masks */ #ifdef CELL_CAPABLE typedef __uint64_t bhv_posmask_t; #define BHV_POSMASK_NULL ((bhv_posmask_t) 0) #define BHV_POSMASK_ONE(a) (((bhv_posmask_t) 1) << (a)) #define BHV_POSMASK_RANGE(a, b) (((((bhv_posmask_t) 1) << ((b)-(a)))-1) << (a)) #define BHV_POSMASK_TEST(a, b) ((a) & BHV_POSMASK(b)) #define BHV_POMASK_TESTID(a, b) BHV_POS_MASK((b)->bi_position) #endif
/* * Plumbing macros. */ #define BHV_HEAD_FIRST(bhp) (ASSERT((bhp)->bh_first), (bhp)->bh_first) #ifdef CELL_CAPABLE #define BHV_NEXT(bdp) (ASSERT((bdp)->bd_next), (bdp)->bd_next) #define BHV_NEXTNULL(bdp) ((bdp)->bd_next) #endif #define BHV_VOBJ(bdp) (ASSERT((bdp)->bd_vobj), (bdp)->bd_vobj) #define BHV_VOBJNULL(bdp) ((bdp)->bd_vobj) #define BHV_PDATA(bdp) (bdp)->bd_pdata #define BHV_OPS(bdp) (bdp)->bd_ops #define BHV_IDENTITY(bdp) ((bhv_identity_t *)(bdp)->bd_ops) #define BHV_POSITION(bdp) (BHV_IDENTITY(bdp)->bi_position)
// /* // * This is used to mark an op table entry for an operation that has // * been deleted but the entry remains reserved so that alignment // * is maintained for compatibility for all subsequent operations. // */ // #define BHV_OP_DELETED NULL
#ifdef CELL_CAPABLE
/* * Macros for manipulation of behavior locks. The following * macros operate on the lock itself. Currently, BHV locks are * simply mrlocks but this implementation could change in the * future. These macros should insulate us from this change. * These macros take a mrlock_t* as an argument. */
#define BHV_MRACCESS(l) mraccess(l) #define BHV_MRACCUNLOCK(l) mraccunlock(l) #define BHV_MRTRYACCESS(l) mrtryaccess(l) #define BHV_MRTRYPROMOTE(l) mrtrypromote(l)
#define BHV_MRUPDATE(l) mrupdate(l) #define BHV_MRTRYUPDATE(l) mrtryupdate(l) #define BHV_MRUNLOCK(l) mrunlock(l) #define BHV_MRDEMOTE(l) mrdemote(l) #define BHV_MRDIVEST(l) mrdivest(l)
#define BHV_MR_IS_READ_LOCKED(l) mrislocked_access(l) #define BHV_MR_NOT_READ_LOCKED(l) (!mrislocked_access(l)) #define BHV_MR_IS_WRITE_LOCKED(l) mrislocked_update(l) #define BHV_MR_NOT_WRITE_LOCKED(l) (!mrislocked_update(l)) #define BHV_MR_IS_EITHER_LOCKED(l) mrislocked_any(l) #define BHV_MR_NOT_EITHER_LOCKED(l) (!mrislocked_any(l)) #define BHV_MR_LOCK_MINE(l) mrlock_mine(l,curthreadp)
/* * Behavior chain lock macros - typically used by ops-in-progress to * synchronize with behavior insertion and object migration. * Theses macros take a behavior (bhv_head_t*) as an * argument. */ #define BH_LOCK(bhp) (&(bhp)->bh_lockp->bhl_lock)
#define BHV_READ_LOCK(bhp) CELL_ONLY(BHV_MRACCESS(BH_LOCK(bhp))) #define BHV_READ_UNLOCK(bhp) CELL_ONLY(BHV_MRACCUNLOCK(BH_LOCK(bhp))) #define BHV_TRYACCESS(bhp) CELL_MUST(BHV_MRTRYACCESS(BH_LOCK(bhp))) #define BHV_TRYPROMOTE(bhp) CELL_MUST(BHV_MRTRYPROMOTE(BH_LOCK(bhp)))
#define BHV_WRITE_LOCK(bhp) CELL_ONLY(BHV_MRUPDATE(BH_LOCK(bhp))) #define BHV_WRITE_UNLOCK(bhp) CELL_ONLY(BHV_MRUNLOCK(BH_LOCK(bhp))) #define BHV_TRYUPDATE(bhp) CELL_MUST(BHV_MRTRYUPDATE(BH_LOCK(bhp))) #define BHV_WRITE_TO_READ(bhp) CELL_ONLY(BHV_MRDEMOTE(BH_LOCK(bhp))) #define BHV_DEMOTE(bhp) CELL_MUST(BHV_MRDEMOTE(BH_LOCK(bhp)))
#define BHV_IS_READ_LOCKED(bhp) CELL_IF(BHV_MR_IS_READ_LOCKED(BH_LOCK(bhp)), 1) #define BHV_NOT_READ_LOCKED(bhp) CELL_IF(BHV_MR_NOT_READ_LOCKED(BH_LOCK(bhp)), 1) #define BHV_IS_WRITE_LOCKED(bhp) CELL_IF(BHV_MR_IS_WRITE_LOCKED(BH_LOCK(bhp)), 1) #define BHV_NOT_WRITE_LOCKED(bhp) CELL_IF(BHV_MR_NOT_WRITE_LOCKED(BH_LOCK(bhp)), 1) #define BHV_IS_EITHER_LOCKED(bhp) CELL_IF(BHV_MR_IS_EITHER_LOCKED(BH_LOCK(bhp)), 1) #define BHV_NOT_EITHER_LOCKED(bhp) CELL_IF(BHV_MR_NOT_EITHER_LOCKED(BH_LOCK(bhp)), 1) #define BHV_LOCK_MINE(bhp) CELL_IF(BHV_MR_LOCK_MINE(BH_LOCK(bhp)), 1) #define BHV_AM_WRITE_OWNER(bhp) \ CELL_IF(BHV_MR_IS_WRITE_LOCKED(BH_LOCK(bhp)) && \ BHV_MR_LOCK_MINE(BH_LOCK(bhp)), 1)
/* * Request a callout to be made ((*func)(bhp, arg1, arg2, arg3, argv, argvsz)) * with the behavior chain update locked. * * Must have read lock before calling this routine. * Note that the callouts will occur in the context of the last * accessor unlocking the behavior. */ typedef void bhv_ucallout_t(bhv_head_t *bhp, void *, void *, caddr_t, size_t);
#define BHV_WRITE_LOCK_CALLOUT(bhp, flags, func, arg1, arg2, argv, argvsz) \ bhv_queue_ucallout(bhp, flags, func, arg1, arg2, argv, argvsz)
#define bhv_lock_init(bhp,name) CELL_ONLY(mrbhinit(BH_LOCK(bhp), (name))) #define bhv_lock_free(bhp) CELL_ONLY(mrfree(BH_LOCK(bhp)))
#else /* not CELL_CAPABLE ie non-cell kernel */
#define BHV_READ_LOCK(bhp) #define BHV_READ_UNLOCK(bhp) #define BHV_NOT_READ_LOCKED(bhp) 1 #define BHV_IS_WRITE_LOCKED(bhp) 1 #define BHV_NOT_WRITE_LOCKED(bhp) 1
#endif /* CELL_CAPABLE */
#ifdef CELL_CAPABLE extern int bhv_try_deferred_ucalloutp(bhv_head_lock_t *bhl);
static __inline int bhv_try_deferred_ucallout(mrlock_t *mrp) { bhv_head_lock_t *bhl;
bhl = MR_TO_BHVL(mrp); if (kcallout_isempty(&bhl->bhl_ucallout)) return 0; return bhv_try_deferred_ucalloutp(bhl); }
#endif
extern void bhv_head_init(bhv_head_t *, char *); extern void bhv_head_destroy(bhv_head_t *); extern void bhv_head_reinit(bhv_head_t *); extern void bhv_insert_initial(bhv_head_t *, bhv_desc_t *);
/* * Initialize a new behavior descriptor. * Arguments: * bdp - pointer to behavior descriptor * pdata - pointer to behavior's private data * vobj - pointer to associated virtual object * ops - pointer to ops for this behavior */ #define bhv_desc_init(bdp, pdata, vobj, ops) \ { \ (bdp)->bd_pdata = pdata; \ (bdp)->bd_vobj = vobj; \ (bdp)->bd_ops = ops; \ (bdp)->bd_next = NULL; \ }
/* * Remove a behavior descriptor from a behavior chain. */ #define bhv_remove(bhp, bdp) \ { \ if ((bhp)->bh_first == (bdp)) { \ /* \ * Remove from front of chain. \ * Atomic wrt oip's. \ */ \ (bhp)->bh_first = (bdp)->bd_next; \ } else { \ /* remove from non-front of chain */ \ bhv_remove_not_first(bhp, bdp); \ } \ (bdp)->bd_vobj = NULL; \ }
/* * Behavior module prototypes. */ #ifdef CELL_CAPABLE extern int bhv_insert(bhv_head_t *bhp, bhv_desc_t *bdp); extern int bhv_forced_insert(bhv_head_t *bhp, bhv_desc_t *bdp); extern int bhv_append(bhv_head_t *bhp, bhv_desc_t *bdp); extern int bhv_truncate(bhv_head_t *bhp, bhv_desc_t *bdp); #endif extern void bhv_remove_not_first(bhv_head_t *bhp, bhv_desc_t *bdp); extern bhv_desc_t * bhv_lookup(bhv_head_t *bhp, void *ops); extern bhv_desc_t * bhv_lookup_unlocked(bhv_head_t *bhp, void *ops); #ifdef CELL_CAPABLE extern bhv_desc_t * bhv_lookup_range(bhv_head_t *bhp, int lpos, int hpos); #endif extern bhv_desc_t * bhv_base_unlocked(bhv_head_t *bhp);
#ifdef CELL_CAPABLE extern void bhv_global_init(void); extern struct zone * bhv_global_zone; extern void bhv_queue_ucallout(bhv_head_t *bhp, int flags, bhv_ucallout_t *func, void *, void *, caddr_t, size_t); extern void bhv_queue_ucallout_unlocked(bhv_head_t *bhp, int flags, bhv_ucallout_t *func, void *, void *, caddr_t, size_t); #endif /* CELL_CAPABLE */
/* * Prototypes for interruptible sleep requests * Noop on non-cell kernels. */ #ifdef CELL_CAPABLE #define BLA_ACCESS 0 #define BLA_UPDATE 1 #define BLA_RWMASK 1 #define BLA_TRY 4 #define BLA_INTERRUPT 8 #ifdef BLALOG #define bla_push(mr,rw,ra) CELL_ONLY(_bla_push(mr,rw,ra)) extern void _bla_push(mrlock_t *mrp, int rw, void *ra); #else #define bla_push(mr,rw,ra) CELL_ONLY(_bla_push(mr,rw)) extern void _bla_push(mrlock_t *mrp, int rw); #endif #define bla_pop(mrp) CELL_ONLY(_bla_pop(mrp)) extern void _bla_pop(mrlock_t *mrp);
#define bla_isleep() CELL_ONLY(_bla_isleep()) extern void _bla_isleep(void);
#define bla_iunsleep() CELL_ONLY(_bla_iunsleep()) extern void _bla_iunsleep(void);
#define bla_wait_for_mrlock(mrp) CELL_IF(_bla_wait_for_mrlock(mrp), 0) extern uint_t _bla_wait_for_mrlock(mrlock_t *mrp);
#define bla_got_mrlock(rv) CELL_ONLY(_bla_got_mrlock(rv)) extern void _bla_got_mrlock(uint_t rv);
#define bla_curlocksheld() \ CELL_MUST((private.p_blaptr - (curthreadp)->k_blap->kb_lockp)) #define bla_klocksheld(kt) \ CELL_MUST(((kt)->k_blap->kb_lockpp - (kt)->k_blap->kb_lockp)) #endif
#endif /* __XFS_BEHAVIOR_H__ */
|