Viewing file: nm256_audio.c (42.2 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Audio driver for the NeoMagic 256AV and 256ZX chipsets in native * mode, with AC97 mixer support. * * Overall design and parts of this code stolen from vidc_*.c and * skeleton.c. * * Yeah, there are a lot of magic constants in here. You tell ME what * they are. I just get this stuff psychically, remember? * * This driver was written by someone who wishes to remain anonymous. * It is in the public domain, so share and enjoy. Try to make a profit * off of it; go on, I dare you. * * Changes: * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> * Added some __init * 19-04-2001 Marcus Meissner <mm@caldera.de> * Ported to 2.4 PCI API. */
#define __NO_VERSION__ #include <linux/pci.h> #include <linux/init.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/delay.h> #include "sound_config.h" #include "nm256.h" #include "nm256_coeff.h"
int nm256_debug; static int force_load;
/* * The size of the playback reserve. When the playback buffer has less * than NM256_PLAY_WMARK_SIZE bytes to output, we request a new * buffer. */ #define NM256_PLAY_WMARK_SIZE 512
static struct audio_driver nm256_audio_driver;
static int nm256_grabInterrupt (struct nm256_info *card); static int nm256_releaseInterrupt (struct nm256_info *card); static void nm256_interrupt (int irq, void *dev_id, struct pt_regs *dummy); static void nm256_interrupt_zx (int irq, void *dev_id, struct pt_regs *dummy); static int handle_pm_event (struct pm_dev *dev, pm_request_t rqst, void *data);
/* These belong in linux/pci.h. */ #define PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO 0x8005 #define PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO 0x8006
/* List of cards. */ static struct nm256_info *nmcard_list;
/* Release the mapped-in memory for CARD. */ static void nm256_release_ports (struct nm256_info *card) { int x;
for (x = 0; x < 2; x++) { if (card->port[x].ptr != NULL) { iounmap (card->port[x].ptr); card->port[x].ptr = NULL; } } }
/* * Map in the memory ports for CARD, if they aren't already mapped in * and have been configured. If successful, a zero value is returned; * otherwise any previously mapped-in areas are released and a non-zero * value is returned. * * This is invoked twice, once for each port. Ideally it would only be * called once, but we now need to map in the second port in order to * check how much memory the card has on the 256ZX. */ static int nm256_remap_ports (struct nm256_info *card) { int x;
for (x = 0; x < 2; x++) { if (card->port[x].ptr == NULL && card->port[x].end_offset > 0) { u32 physaddr = card->port[x].physaddr + card->port[x].start_offset; u32 size = card->port[x].end_offset - card->port[x].start_offset;
card->port[x].ptr = ioremap_nocache (physaddr, size); if (card->port[x].ptr == NULL) { printk (KERN_ERR "NM256: Unable to remap port %d\n", x + 1); nm256_release_ports (card); return -1; } } } return 0; }
/* Locate the card in our list. */ static struct nm256_info * nm256_find_card (int dev) { struct nm256_info *card;
for (card = nmcard_list; card != NULL; card = card->next_card) if (card->dev[0] == dev || card->dev[1] == dev) return card;
return NULL; }
/* * Ditto, but find the card struct corresponding to the mixer device DEV * instead. */ static struct nm256_info * nm256_find_card_for_mixer (int dev) { struct nm256_info *card;
for (card = nmcard_list; card != NULL; card = card->next_card) if (card->mixer_oss_dev == dev) return card;
return NULL; }
static int usecache; static int buffertop;
/* Check to see if we're using the bank of cached coefficients. */ int nm256_cachedCoefficients (struct nm256_info *card) { return usecache; }
/* The actual rates supported by the card. */ static int samplerates[9] = { 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 99999999 };
/* * Set the card samplerate, word size and stereo mode to correspond to * the settings in the CARD struct for the specified device in DEV. * We keep two separate sets of information, one for each device; the * hardware is not actually configured until a read or write is * attempted. */
int nm256_setInfo (int dev, struct nm256_info *card) { int x; int w; int targetrate;
if (card->dev[0] == dev) w = 0; else if (card->dev[1] == dev) w = 1; else return -ENODEV;
targetrate = card->sinfo[w].samplerate;
if ((card->sinfo[w].bits != 8 && card->sinfo[w].bits != 16) || targetrate < samplerates[0] || targetrate > samplerates[7]) return -EINVAL;
for (x = 0; x < 8; x++) if (targetrate < ((samplerates[x] + samplerates[x + 1]) / 2)) break;
if (x < 8) { u8 ratebits = ((x << 4) & NM_RATE_MASK); if (card->sinfo[w].bits == 16) ratebits |= NM_RATE_BITS_16; if (card->sinfo[w].stereo) ratebits |= NM_RATE_STEREO;
card->sinfo[w].samplerate = samplerates[x];
if (card->dev_for_play == dev && card->playing) { if (nm256_debug) printk (KERN_DEBUG "Setting play ratebits to 0x%x\n", ratebits); nm256_loadCoefficient (card, 0, x); nm256_writePort8 (card, 2, NM_PLAYBACK_REG_OFFSET + NM_RATE_REG_OFFSET, ratebits); }
if (card->dev_for_record == dev && card->recording) { if (nm256_debug) printk (KERN_DEBUG "Setting record ratebits to 0x%x\n", ratebits); nm256_loadCoefficient (card, 1, x); nm256_writePort8 (card, 2, NM_RECORD_REG_OFFSET + NM_RATE_REG_OFFSET, ratebits); } return 0; } else return -EINVAL; }
/* Start the play process going. */ static void startPlay (struct nm256_info *card) { if (! card->playing) { card->playing = 1; if (nm256_grabInterrupt (card) == 0) { nm256_setInfo (card->dev_for_play, card);
/* Enable playback engine and interrupts. */ nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG, NM_PLAYBACK_ENABLE_FLAG | NM_PLAYBACK_FREERUN);
/* Enable both channels. */ nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG, 0x0); } } }
/* * Request one chunk of AMT bytes from the recording device. When the * operation is complete, the data will be copied into BUFFER and the * function DMAbuf_inputintr will be invoked. */
static void nm256_startRecording (struct nm256_info *card, char *buffer, u32 amt) { u32 endpos; int enableEngine = 0; u32 ringsize = card->recordBufferSize; unsigned long flags;
if (amt > (ringsize / 2)) { /* * Of course this won't actually work right, because the * caller is going to assume we will give what we got asked * for. */ printk (KERN_ERR "NM256: Read request too large: %d\n", amt); amt = ringsize / 2; }
if (amt < 8) { printk (KERN_ERR "NM256: Read request too small; %d\n", amt); return; }
save_flags (flags); cli (); /* * If we're not currently recording, set up the start and end registers * for the recording engine. */ if (! card->recording) { card->recording = 1; if (nm256_grabInterrupt (card) == 0) { card->curRecPos = 0; nm256_setInfo (card->dev_for_record, card); nm256_writePort32 (card, 2, NM_RBUFFER_START, card->abuf2); nm256_writePort32 (card, 2, NM_RBUFFER_END, card->abuf2 + ringsize);
nm256_writePort32 (card, 2, NM_RBUFFER_CURRP, card->abuf2 + card->curRecPos); enableEngine = 1; } else { /* Not sure what else to do here. */ restore_flags (flags); return; } }
/* * If we happen to go past the end of the buffer a bit (due to a * delayed interrupt) it's OK. So might as well set the watermark * right at the end of the data we want. */ endpos = card->abuf2 + ((card->curRecPos + amt) % ringsize);
card->recBuf = buffer; card->requestedRecAmt = amt; nm256_writePort32 (card, 2, NM_RBUFFER_WMARK, endpos); /* Enable recording engine and interrupts. */ if (enableEngine) nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG, NM_RECORD_ENABLE_FLAG | NM_RECORD_FREERUN);
restore_flags (flags); }
/* Stop the play engine. */ static void stopPlay (struct nm256_info *card) { /* Shut off sound from both channels. */ nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG, NM_AUDIO_MUTE_LEFT | NM_AUDIO_MUTE_RIGHT); /* Disable play engine. */ nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG, 0); if (card->playing) { nm256_releaseInterrupt (card);
/* Reset the relevant state bits. */ card->playing = 0; card->curPlayPos = 0; } }
/* Stop recording. */ static void stopRecord (struct nm256_info *card) { /* Disable recording engine. */ nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG, 0);
if (card->recording) { nm256_releaseInterrupt (card);
card->recording = 0; card->curRecPos = 0; } }
/* * Ring buffers, man. That's where the hip-hop, wild-n-wooly action's at. * 1972? (Well, I suppose it was cheep-n-easy to implement.) * * Write AMT bytes of BUFFER to the playback ring buffer, and start the * playback engine running. It will only accept up to 1/2 of the total * size of the ring buffer. No check is made that we're about to overwrite * the currently-playing sample. */
static void nm256_write_block (struct nm256_info *card, char *buffer, u32 amt) { u32 ringsize = card->playbackBufferSize; u32 endstop; unsigned long flags;
if (amt > (ringsize / 2)) { printk (KERN_ERR "NM256: Write request too large: %d\n", amt); amt = (ringsize / 2); }
if (amt < NM256_PLAY_WMARK_SIZE) { printk (KERN_ERR "NM256: Write request too small: %d\n", amt); return; }
card->curPlayPos %= ringsize;
card->requested_amt = amt;
save_flags (flags); cli ();
if ((card->curPlayPos + amt) >= ringsize) { u32 rem = ringsize - card->curPlayPos;
nm256_writeBuffer8 (card, buffer, 1, card->abuf1 + card->curPlayPos, rem); if (amt > rem) nm256_writeBuffer8 (card, buffer + rem, 1, card->abuf1, amt - rem); } else nm256_writeBuffer8 (card, buffer, 1, card->abuf1 + card->curPlayPos, amt);
/* * Setup the start-n-stop-n-limit registers, and start that engine * goin'. * * Normally we just let it wrap around to avoid the click-click * action scene. */ if (! card->playing) { /* The PBUFFER_END register in this case points to one sample before the end of the buffer. */ int w = (card->dev_for_play == card->dev[0] ? 0 : 1); int sampsize = (card->sinfo[w].bits == 16 ? 2 : 1);
if (card->sinfo[w].stereo) sampsize *= 2;
/* Need to set the not-normally-changing-registers up. */ nm256_writePort32 (card, 2, NM_PBUFFER_START, card->abuf1 + card->curPlayPos); nm256_writePort32 (card, 2, NM_PBUFFER_END, card->abuf1 + ringsize - sampsize); nm256_writePort32 (card, 2, NM_PBUFFER_CURRP, card->abuf1 + card->curPlayPos); } endstop = (card->curPlayPos + amt - NM256_PLAY_WMARK_SIZE) % ringsize; nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop);
if (! card->playing) startPlay (card);
restore_flags (flags); }
/* We just got a card playback interrupt; process it. */ static void nm256_get_new_block (struct nm256_info *card) { /* Check to see how much got played so far. */ u32 amt = nm256_readPort32 (card, 2, NM_PBUFFER_CURRP) - card->abuf1;
if (amt >= card->playbackBufferSize) { printk (KERN_ERR "NM256: Sound playback pointer invalid!\n"); amt = 0; }
if (amt < card->curPlayPos) amt = (card->playbackBufferSize - card->curPlayPos) + amt; else amt -= card->curPlayPos;
if (card->requested_amt > (amt + NM256_PLAY_WMARK_SIZE)) { u32 endstop = card->curPlayPos + card->requested_amt - NM256_PLAY_WMARK_SIZE; nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop); } else { card->curPlayPos += card->requested_amt; /* Get a new block to write. This will eventually invoke nm256_write_block () or stopPlay (). */ DMAbuf_outputintr (card->dev_for_play, 1); } }
/* Ultra cheez-whiz. But I'm too lazy to grep headers. */ #define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
/* * Read the last-recorded block from the ring buffer, copy it into the * saved buffer pointer, and invoke DMAuf_inputintr() with the recording * device. */
static void nm256_read_block (struct nm256_info *card) { /* Grab the current position of the recording pointer. */ u32 currptr = nm256_readPort32 (card, 2, NM_RBUFFER_CURRP) - card->abuf2; u32 amtToRead = card->requestedRecAmt; u32 ringsize = card->recordBufferSize;
if (currptr >= card->recordBufferSize) { printk (KERN_ERR "NM256: Sound buffer record pointer invalid!\n"); currptr = 0; }
/* * This test is probably redundant; we shouldn't be here unless * it's true. */ if (card->recording) { /* If we wrapped around, copy everything from the start of our recording buffer to the end of the buffer. */ if (currptr < card->curRecPos) { u32 amt = MIN (ringsize - card->curRecPos, amtToRead);
nm256_readBuffer8 (card, card->recBuf, 1, card->abuf2 + card->curRecPos, amt); amtToRead -= amt; card->curRecPos += amt; card->recBuf += amt; if (card->curRecPos == ringsize) card->curRecPos = 0; }
if ((card->curRecPos < currptr) && (amtToRead > 0)) { u32 amt = MIN (currptr - card->curRecPos, amtToRead); nm256_readBuffer8 (card, card->recBuf, 1, card->abuf2 + card->curRecPos, amt); card->curRecPos = ((card->curRecPos + amt) % ringsize); } card->recBuf = NULL; card->requestedRecAmt = 0; DMAbuf_inputintr (card->dev_for_record); } } #undef MIN
/* * Initialize the hardware. */ static void nm256_initHw (struct nm256_info *card) { /* Reset everything. */ nm256_writePort8 (card, 2, 0x0, 0x11); nm256_writePort16 (card, 2, 0x214, 0);
stopRecord (card); stopPlay (card); }
/* * Handle a potential interrupt for the device referred to by DEV_ID. * * I don't like the cut-n-paste job here either between the two routines, * but there are sufficient differences between the two interrupt handlers * that parameterizing it isn't all that great either. (Could use a macro, * I suppose...yucky bleah.) */
static void nm256_interrupt (int irq, void *dev_id, struct pt_regs *dummy) { struct nm256_info *card = (struct nm256_info *)dev_id; u16 status; static int badintrcount = 0;
if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) { printk (KERN_ERR "NM256: Bad card pointer\n"); return; }
status = nm256_readPort16 (card, 2, NM_INT_REG);
/* Not ours. */ if (status == 0) { if (badintrcount++ > 1000) { /* * I'm not sure if the best thing is to stop the card from * playing or just release the interrupt (after all, we're in * a bad situation, so doing fancy stuff may not be such a good * idea). * * I worry about the card engine continuing to play noise * over and over, however--that could become a very * obnoxious problem. And we know that when this usually * happens things are fairly safe, it just means the user's * inserted a PCMCIA card and someone's spamming us with IRQ 9s. */
if (card->playing) stopPlay (card); if (card->recording) stopRecord (card); badintrcount = 0; } return; }
badintrcount = 0;
/* Rather boring; check for individual interrupts and process them. */
if (status & NM_PLAYBACK_INT) { status &= ~NM_PLAYBACK_INT; NM_ACK_INT (card, NM_PLAYBACK_INT);
if (card->playing) nm256_get_new_block (card); }
if (status & NM_RECORD_INT) { status &= ~NM_RECORD_INT; NM_ACK_INT (card, NM_RECORD_INT);
if (card->recording) nm256_read_block (card); }
if (status & NM_MISC_INT_1) { u8 cbyte;
status &= ~NM_MISC_INT_1; printk (KERN_ERR "NM256: Got misc interrupt #1\n"); NM_ACK_INT (card, NM_MISC_INT_1); nm256_writePort16 (card, 2, NM_INT_REG, 0x8000); cbyte = nm256_readPort8 (card, 2, 0x400); nm256_writePort8 (card, 2, 0x400, cbyte | 2); }
if (status & NM_MISC_INT_2) { u8 cbyte;
status &= ~NM_MISC_INT_2; printk (KERN_ERR "NM256: Got misc interrupt #2\n"); NM_ACK_INT (card, NM_MISC_INT_2); cbyte = nm256_readPort8 (card, 2, 0x400); nm256_writePort8 (card, 2, 0x400, cbyte & ~2); }
/* Unknown interrupt. */ if (status) { printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n", status); /* Pray. */ NM_ACK_INT (card, status); } }
/* * Handle a potential interrupt for the device referred to by DEV_ID. * This handler is for the 256ZX, and is very similar to the non-ZX * routine. */
static void nm256_interrupt_zx (int irq, void *dev_id, struct pt_regs *dummy) { struct nm256_info *card = (struct nm256_info *)dev_id; u32 status; static int badintrcount = 0;
if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) { printk (KERN_ERR "NM256: Bad card pointer\n"); return; }
status = nm256_readPort32 (card, 2, NM_INT_REG);
/* Not ours. */ if (status == 0) { if (badintrcount++ > 1000) { printk (KERN_ERR "NM256: Releasing interrupt, over 1000 invalid interrupts\n"); /* * I'm not sure if the best thing is to stop the card from * playing or just release the interrupt (after all, we're in * a bad situation, so doing fancy stuff may not be such a good * idea). * * I worry about the card engine continuing to play noise * over and over, however--that could become a very * obnoxious problem. And we know that when this usually * happens things are fairly safe, it just means the user's * inserted a PCMCIA card and someone's spamming us with * IRQ 9s. */
if (card->playing) stopPlay (card); if (card->recording) stopRecord (card); badintrcount = 0; } return; }
badintrcount = 0;
/* Rather boring; check for individual interrupts and process them. */
if (status & NM2_PLAYBACK_INT) { status &= ~NM2_PLAYBACK_INT; NM2_ACK_INT (card, NM2_PLAYBACK_INT);
if (card->playing) nm256_get_new_block (card); }
if (status & NM2_RECORD_INT) { status &= ~NM2_RECORD_INT; NM2_ACK_INT (card, NM2_RECORD_INT);
if (card->recording) nm256_read_block (card); }
if (status & NM2_MISC_INT_1) { u8 cbyte;
status &= ~NM2_MISC_INT_1; printk (KERN_ERR "NM256: Got misc interrupt #1\n"); NM2_ACK_INT (card, NM2_MISC_INT_1); cbyte = nm256_readPort8 (card, 2, 0x400); nm256_writePort8 (card, 2, 0x400, cbyte | 2); }
if (status & NM2_MISC_INT_2) { u8 cbyte;
status &= ~NM2_MISC_INT_2; printk (KERN_ERR "NM256: Got misc interrupt #2\n"); NM2_ACK_INT (card, NM2_MISC_INT_2); cbyte = nm256_readPort8 (card, 2, 0x400); nm256_writePort8 (card, 2, 0x400, cbyte & ~2); }
/* Unknown interrupt. */ if (status) { printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n", status); /* Pray. */ NM2_ACK_INT (card, status); } }
/* * Request our interrupt. */ static int nm256_grabInterrupt (struct nm256_info *card) { if (card->has_irq++ == 0) { if (request_irq (card->irq, card->introutine, SA_SHIRQ, "NM256_audio", card) < 0) { printk (KERN_ERR "NM256: can't obtain IRQ %d\n", card->irq); return -1; } } return 0; }
/* * Release our interrupt. */ static int nm256_releaseInterrupt (struct nm256_info *card) { if (card->has_irq <= 0) { printk (KERN_ERR "nm256: too many calls to releaseInterrupt\n"); return -1; } card->has_irq--; if (card->has_irq == 0) { free_irq (card->irq, card); } return 0; }
/* * Waits for the mixer to become ready to be written; returns a zero value * if it timed out. */
static int nm256_isReady (struct ac97_hwint *dev) { struct nm256_info *card = (struct nm256_info *)dev->driver_private; int t2 = 10; u32 testaddr; u16 testb; int done = 0;
if (card->magsig != NM_MAGIC_SIG) { printk (KERN_ERR "NM256: Bad magic signature in isReady!\n"); return 0; }
testaddr = card->mixer_status_offset; testb = card->mixer_status_mask;
/* * Loop around waiting for the mixer to become ready. */ while (! done && t2-- > 0) { if ((nm256_readPort16 (card, 2, testaddr) & testb) == 0) done = 1; else udelay (100); } return done; }
/* * Return the contents of the AC97 mixer register REG. Returns a positive * value if successful, or a negative error code. */ static int nm256_readAC97Reg (struct ac97_hwint *dev, u8 reg) { struct nm256_info *card = (struct nm256_info *)dev->driver_private;
if (card->magsig != NM_MAGIC_SIG) { printk (KERN_ERR "NM256: Bad magic signature in readAC97Reg!\n"); return -EINVAL; }
if (reg < 128) { int res;
nm256_isReady (dev); res = nm256_readPort16 (card, 2, card->mixer + reg); /* Magic delay. Bleah yucky. */ udelay (1000); return res; } else return -EINVAL; }
/* * Writes VALUE to AC97 mixer register REG. Returns 0 if successful, or * a negative error code. */ static int nm256_writeAC97Reg (struct ac97_hwint *dev, u8 reg, u16 value) { unsigned long flags; int tries = 2; int done = 0; u32 base;
struct nm256_info *card = (struct nm256_info *)dev->driver_private;
if (card->magsig != NM_MAGIC_SIG) { printk (KERN_ERR "NM256: Bad magic signature in writeAC97Reg!\n"); return -EINVAL; }
base = card->mixer;
save_flags (flags); cli ();
nm256_isReady (dev);
/* Wait for the write to take, too. */ while ((tries-- > 0) && !done) { nm256_writePort16 (card, 2, base + reg, value); if (nm256_isReady (dev)) { done = 1; break; }
}
restore_flags (flags); udelay (1000);
return ! done; }
/* * Initial register values to be written to the AC97 mixer. * While most of these are identical to the reset values, we do this * so that we have most of the register contents cached--this avoids * reading from the mixer directly (which seems to be problematic, * probably due to ignorance). */ struct initialValues { unsigned short port; unsigned short value; };
static struct initialValues nm256_ac97_initial_values[] = { { AC97_MASTER_VOL_STEREO, 0x8000 }, { AC97_HEADPHONE_VOL, 0x8000 }, { AC97_MASTER_VOL_MONO, 0x0000 }, { AC97_PCBEEP_VOL, 0x0000 }, { AC97_PHONE_VOL, 0x0008 }, { AC97_MIC_VOL, 0x8000 }, { AC97_LINEIN_VOL, 0x8808 }, { AC97_CD_VOL, 0x8808 }, { AC97_VIDEO_VOL, 0x8808 }, { AC97_AUX_VOL, 0x8808 }, { AC97_PCMOUT_VOL, 0x0808 }, { AC97_RECORD_SELECT, 0x0000 }, { AC97_RECORD_GAIN, 0x0B0B }, { AC97_GENERAL_PURPOSE, 0x0000 }, { 0xffff, 0xffff } };
/* Initialize the AC97 into a known state. */ static int nm256_resetAC97 (struct ac97_hwint *dev) { struct nm256_info *card = (struct nm256_info *)dev->driver_private; int x;
if (card->magsig != NM_MAGIC_SIG) { printk (KERN_ERR "NM256: Bad magic signature in resetAC97!\n"); return -EINVAL; }
/* Reset the mixer. 'Tis magic! */ nm256_writePort8 (card, 2, 0x6c0, 1); nm256_writePort8 (card, 2, 0x6cc, 0x87); nm256_writePort8 (card, 2, 0x6cc, 0x80); nm256_writePort8 (card, 2, 0x6cc, 0x0);
if (! card->mixer_values_init) { for (x = 0; nm256_ac97_initial_values[x].port != 0xffff; x++) { ac97_put_register (dev, nm256_ac97_initial_values[x].port, nm256_ac97_initial_values[x].value); card->mixer_values_init = 1; } }
return 0; }
/* * We don't do anything particularly special here; it just passes the * mixer ioctl to the AC97 driver. */ static int nm256_default_mixer_ioctl (int dev, unsigned int cmd, caddr_t arg) { struct nm256_info *card = nm256_find_card_for_mixer (dev); if (card != NULL) return ac97_mixer_ioctl (&(card->mdev), cmd, arg); else return -ENODEV; }
static struct mixer_operations nm256_mixer_operations = { owner: THIS_MODULE, id: "NeoMagic", name: "NM256AC97Mixer", ioctl: nm256_default_mixer_ioctl };
/* * Default settings for the OSS mixer. These are set last, after the * mixer is initialized. * * I "love" C sometimes. Got braces? */ static struct ac97_mixer_value_list mixer_defaults[] = { { SOUND_MIXER_VOLUME, { { 85, 85 } } }, { SOUND_MIXER_SPEAKER, { { 100 } } }, { SOUND_MIXER_PCM, { { 65, 65 } } }, { SOUND_MIXER_CD, { { 65, 65 } } }, { -1, { { 0, 0 } } } };
/* Installs the AC97 mixer into CARD. */ static int __init nm256_install_mixer (struct nm256_info *card) { int mixer;
card->mdev.reset_device = nm256_resetAC97; card->mdev.read_reg = nm256_readAC97Reg; card->mdev.write_reg = nm256_writeAC97Reg; card->mdev.driver_private = (void *)card;
if (ac97_init (&(card->mdev))) return -1;
mixer = sound_alloc_mixerdev(); if (num_mixers >= MAX_MIXER_DEV) { printk ("NM256 mixer: Unable to alloc mixerdev\n"); return -1; }
mixer_devs[mixer] = &nm256_mixer_operations; card->mixer_oss_dev = mixer;
/* Some reasonable default values. */ ac97_set_values (&(card->mdev), mixer_defaults);
printk(KERN_INFO "Initialized AC97 mixer\n"); return 0; }
/* Perform a full reset on the hardware; this is invoked when an APM resume event occurs. */ static void nm256_full_reset (struct nm256_info *card) { nm256_initHw (card); ac97_reset (&(card->mdev)); }
/* * See if the signature left by the NM256 BIOS is intact; if so, we use * the associated address as the end of our audio buffer in the video * RAM. */
static void __init nm256_peek_for_sig (struct nm256_info *card) { u32 port1offset = card->port[0].physaddr + card->port[0].end_offset - 0x0400; /* The signature is located 1K below the end of video RAM. */ char *temp = ioremap_nocache (port1offset, 16); /* Default buffer end is 5120 bytes below the top of RAM. */ u32 default_value = card->port[0].end_offset - 0x1400; u32 sig;
/* Install the default value first, so we don't have to repeatedly do it if there is a problem. */ card->port[0].end_offset = default_value;
if (temp == NULL) { printk (KERN_ERR "NM256: Unable to scan for card signature in video RAM\n"); return; } sig = readl (temp); if ((sig & NM_SIG_MASK) == NM_SIGNATURE) { u32 pointer = readl (temp + 4);
/* * If it's obviously invalid, don't use it (the port already has a * suitable default value set). */ if (pointer != 0xffffffff) card->port[0].end_offset = pointer;
printk (KERN_INFO "NM256: Found card signature in video RAM: 0x%x\n", pointer); }
iounmap (temp); }
/* * Install a driver for the PCI device referenced by PCIDEV. * VERSTR is a human-readable version string. */
static int __init nm256_install(struct pci_dev *pcidev, enum nm256rev rev, char *verstr) { struct nm256_info *card; struct pm_dev *pmdev; int x;
if (pci_enable_device(pcidev)) return 0;
card = kmalloc (sizeof (struct nm256_info), GFP_KERNEL); if (card == NULL) { printk (KERN_ERR "NM256: out of memory!\n"); return 0; }
card->magsig = NM_MAGIC_SIG; card->playing = 0; card->recording = 0; card->rev = rev;
/* Init the memory port info. */ for (x = 0; x < 2; x++) { card->port[x].physaddr = pci_resource_start (pcidev, x); card->port[x].ptr = NULL; card->port[x].start_offset = 0; card->port[x].end_offset = 0; }
/* Port 2 is easy. */ card->port[1].start_offset = 0; card->port[1].end_offset = NM_PORT2_SIZE;
/* Yuck. But we have to map in port 2 so we can check how much RAM the card has. */ if (nm256_remap_ports (card)) { kfree (card); return 0; }
/* * The NM256 has two memory ports. The first port is nothing * more than a chunk of video RAM, which is used as the I/O ring * buffer. The second port has the actual juicy stuff (like the * mixer and the playback engine control registers). */
if (card->rev == REV_NM256AV) { /* Ok, try to see if this is a non-AC97 version of the hardware. */ int pval = nm256_readPort16 (card, 2, NM_MIXER_PRESENCE); if ((pval & NM_PRESENCE_MASK) != NM_PRESENCE_VALUE) { if (! force_load) { printk (KERN_ERR "NM256: This doesn't look to me like the AC97-compatible version.\n"); printk (KERN_ERR " You can force the driver to load by passing in the module\n"); printk (KERN_ERR " parameter:\n"); printk (KERN_ERR " force_ac97 = 1\n"); printk (KERN_ERR "\n"); printk (KERN_ERR " More likely, you should be using the appropriate SB-16 or\n"); printk (KERN_ERR " CS4232 driver instead. (If your BIOS has settings for\n"); printk (KERN_ERR " IRQ and/or DMA for the sound card, this is *not* the correct\n"); printk (KERN_ERR " driver to use.)\n"); nm256_release_ports (card); kfree (card); return 0; } else { printk (KERN_INFO "NM256: Forcing driver load as per user request.\n"); } } else { /* printk (KERN_INFO "NM256: Congratulations. You're not running Eunice.\n")*/; } card->port[0].end_offset = 2560 * 1024; card->introutine = nm256_interrupt; card->mixer_status_offset = NM_MIXER_STATUS_OFFSET; card->mixer_status_mask = NM_MIXER_READY_MASK; } else { /* Not sure if there is any relevant detect for the ZX or not. */ if (nm256_readPort8 (card, 2, 0xa0b) != 0) card->port[0].end_offset = 6144 * 1024; else card->port[0].end_offset = 4096 * 1024;
card->introutine = nm256_interrupt_zx; card->mixer_status_offset = NM2_MIXER_STATUS_OFFSET; card->mixer_status_mask = NM2_MIXER_READY_MASK; }
if (buffertop >= 98304 && buffertop < card->port[0].end_offset) card->port[0].end_offset = buffertop; else nm256_peek_for_sig (card);
card->port[0].start_offset = card->port[0].end_offset - 98304;
printk (KERN_INFO "NM256: Mapping port 1 from 0x%x - 0x%x\n", card->port[0].start_offset, card->port[0].end_offset);
if (nm256_remap_ports (card)) { kfree (card); return 0; }
/* See if we can get the interrupt. */
card->irq = pcidev->irq; card->has_irq = 0;
if (nm256_grabInterrupt (card) != 0) { nm256_release_ports (card); kfree (card); return 0; }
nm256_releaseInterrupt (card);
/* * Init the board. */
card->playbackBufferSize = 16384; card->recordBufferSize = 16384;
card->coeffBuf = card->port[0].end_offset - NM_MAX_COEFFICIENT; card->abuf2 = card->coeffBuf - card->recordBufferSize; card->abuf1 = card->abuf2 - card->playbackBufferSize; card->allCoeffBuf = card->abuf2 - (NM_TOTAL_COEFF_COUNT * 4);
/* Fixed setting. */ card->mixer = NM_MIXER_OFFSET; card->mixer_values_init = 0;
card->is_open_play = 0; card->is_open_record = 0;
card->coeffsCurrent = 0;
card->opencnt[0] = 0; card->opencnt[1] = 0;
/* Reasonable default settings, but largely unnecessary. */ for (x = 0; x < 2; x++) { card->sinfo[x].bits = 8; card->sinfo[x].stereo = 0; card->sinfo[x].samplerate = 8000; }
nm256_initHw (card);
for (x = 0; x < 2; x++) { if ((card->dev[x] = sound_install_audiodrv(AUDIO_DRIVER_VERSION, "NM256", &nm256_audio_driver, sizeof(struct audio_driver), DMA_NODMA, AFMT_U8 | AFMT_S16_LE, NULL, -1, -1)) >= 0) { /* 1K minimum buffer size. */ audio_devs[card->dev[x]]->min_fragment = 10; /* Maximum of 8K buffer size. */ audio_devs[card->dev[x]]->max_fragment = 13; } else { printk(KERN_ERR "NM256: Too many PCM devices available\n"); nm256_release_ports (card); kfree (card); return 0; } }
pci_set_drvdata(pcidev,card);
/* Insert the card in the list. */ card->next_card = nmcard_list; nmcard_list = card;
printk(KERN_INFO "Initialized NeoMagic %s audio in PCI native mode\n", verstr);
/* * And our mixer. (We should allow support for other mixers, maybe.) */
nm256_install_mixer (card);
pmdev = pm_register(PM_PCI_DEV, PM_PCI_ID(pcidev), handle_pm_event); if (pmdev) pmdev->data = card;
return 1; }
/* * PM event handler, so the card is properly reinitialized after a power * event. */ static int handle_pm_event (struct pm_dev *dev, pm_request_t rqst, void *data) { struct nm256_info *crd = (struct nm256_info*) dev->data; if (crd) { switch (rqst) { case PM_SUSPEND: break; case PM_RESUME: { int playing = crd->playing; nm256_full_reset (crd); /* * A little ugly, but that's ok; pretend the * block we were playing is done. */ if (playing) DMAbuf_outputintr (crd->dev_for_play, 1); } break; } } return 0; }
static int __devinit nm256_probe(struct pci_dev *pcidev,const struct pci_device_id *pciid) { if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO) return nm256_install(pcidev, REV_NM256AV, "256AV"); if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO) return nm256_install(pcidev, REV_NM256ZX, "256ZX"); return -1; /* should not come here ... */ }
static void __devinit nm256_remove(struct pci_dev *pcidev) { struct nm256_info *xcard = pci_get_drvdata(pcidev); struct nm256_info *card,*next_card = NULL;
for (card = nmcard_list; card != NULL; card = next_card) { next_card = card->next_card; if (card == xcard) { stopPlay (card); stopRecord (card); if (card->has_irq) free_irq (card->irq, card); nm256_release_ports (card); sound_unload_mixerdev (card->mixer_oss_dev); sound_unload_audiodev (card->dev[0]); sound_unload_audiodev (card->dev[1]); kfree (card); break; } } if (nmcard_list == card) nmcard_list = next_card; }
/* * Open the device * * DEV - device * MODE - mode to open device (logical OR of OPEN_READ and OPEN_WRITE) * * Called when opening the DMAbuf (dmabuf.c:259) */ static int nm256_audio_open(int dev, int mode) { struct nm256_info *card = nm256_find_card (dev); int w; if (card == NULL) return -ENODEV;
if (card->dev[0] == dev) w = 0; else if (card->dev[1] == dev) w = 1; else return -ENODEV;
if (card->opencnt[w] > 0) return -EBUSY;
/* No bits set? Huh? */ if (! ((mode & OPEN_READ) || (mode & OPEN_WRITE))) return -EIO;
/* * If it's open for both read and write, and the card's currently * being read or written to, then do the opposite of what has * already been done. Otherwise, don't specify any mode until the * user actually tries to do I/O. (Some programs open the device * for both read and write, but only actually do reading or writing.) */
if ((mode & OPEN_WRITE) && (mode & OPEN_READ)) { if (card->is_open_play) mode = OPEN_WRITE; else if (card->is_open_record) mode = OPEN_READ; else mode = 0; } if (mode & OPEN_WRITE) { if (card->is_open_play == 0) { card->dev_for_play = dev; card->is_open_play = 1; } else return -EBUSY; }
if (mode & OPEN_READ) { if (card->is_open_record == 0) { card->dev_for_record = dev; card->is_open_record = 1; } else return -EBUSY; }
card->opencnt[w]++; return 0; }
/* * Close the device * * DEV - device * * Called when closing the DMAbuf (dmabuf.c:477) * after halt_xfer */ static void nm256_audio_close(int dev) { struct nm256_info *card = nm256_find_card (dev); if (card != NULL) { int w;
if (card->dev[0] == dev) w = 0; else if (card->dev[1] == dev) w = 1; else return;
card->opencnt[w]--; if (card->opencnt[w] <= 0) { card->opencnt[w] = 0;
if (card->dev_for_play == dev) { stopPlay (card); card->is_open_play = 0; card->dev_for_play = -1; }
if (card->dev_for_record == dev) { stopRecord (card); card->is_open_record = 0; card->dev_for_record = -1; } } } }
/* Standard ioctl handler. */ static int nm256_audio_ioctl(int dev, unsigned int cmd, caddr_t arg) { int ret; u32 oldinfo; int w;
struct nm256_info *card = nm256_find_card (dev);
if (card == NULL) return -ENODEV;
if (dev == card->dev[0]) w = 0; else w = 1;
/* * The code here is messy. There are probably better ways to do * it. (It should be possible to handle it the same way the AC97 mixer * is done.) */ switch (cmd) { case SOUND_PCM_WRITE_RATE: if (get_user(ret, (int *) arg)) return -EFAULT;
if (ret != 0) { oldinfo = card->sinfo[w].samplerate; card->sinfo[w].samplerate = ret; ret = nm256_setInfo(dev, card); if (ret != 0) card->sinfo[w].samplerate = oldinfo; } if (ret == 0) ret = card->sinfo[w].samplerate; break;
case SOUND_PCM_READ_RATE: ret = card->sinfo[w].samplerate; break;
case SNDCTL_DSP_STEREO: if (get_user(ret, (int *) arg)) return -EFAULT;
card->sinfo[w].stereo = ret ? 1 : 0; ret = nm256_setInfo (dev, card); if (ret == 0) ret = card->sinfo[w].stereo;
break;
case SOUND_PCM_WRITE_CHANNELS: if (get_user(ret, (int *) arg)) return -EFAULT;
if (ret < 1 || ret > 3) ret = card->sinfo[w].stereo + 1; else { card->sinfo[w].stereo = ret - 1; ret = nm256_setInfo (dev, card); if (ret == 0) ret = card->sinfo[w].stereo + 1; } break;
case SOUND_PCM_READ_CHANNELS: ret = card->sinfo[w].stereo + 1; break;
case SNDCTL_DSP_SETFMT: if (get_user(ret, (int *) arg)) return -EFAULT;
if (ret != 0) { oldinfo = card->sinfo[w].bits; card->sinfo[w].bits = ret; ret = nm256_setInfo (dev, card); if (ret != 0) card->sinfo[w].bits = oldinfo; } if (ret == 0) ret = card->sinfo[w].bits; break;
case SOUND_PCM_READ_BITS: ret = card->sinfo[w].bits; break;
default: return -EINVAL; } return put_user(ret, (int *) arg); }
/* * Given the sound device DEV and an associated physical buffer PHYSBUF, * return a pointer to the actual buffer in kernel space. * * This routine should exist as part of the soundcore routines. */
static char * nm256_getDMAbuffer (int dev, unsigned long physbuf) { struct audio_operations *adev = audio_devs[dev]; struct dma_buffparms *dmap = adev->dmap_out; char *dma_start = (char *)(physbuf - (unsigned long)dmap->raw_buf_phys + (unsigned long)dmap->raw_buf);
return dma_start; }
/* * Output a block to sound device * * dev - device number * buf - physical address of buffer * total_count - total byte count in buffer * intrflag - set if this has been called from an interrupt * (via DMAbuf_outputintr) * restart_dma - set if engine needs to be re-initialised * * Called when: * 1. Starting output (dmabuf.c:1327) * 2. (dmabuf.c:1504) * 3. A new buffer needs to be sent to the device (dmabuf.c:1579) */ static void nm256_audio_output_block(int dev, unsigned long physbuf, int total_count, int intrflag) { struct nm256_info *card = nm256_find_card (dev);
if (card != NULL) { char *dma_buf = nm256_getDMAbuffer (dev, physbuf); card->is_open_play = 1; card->dev_for_play = dev; nm256_write_block (card, dma_buf, total_count); } }
/* Ditto, but do recording instead. */ static void nm256_audio_start_input(int dev, unsigned long physbuf, int count, int intrflag) { struct nm256_info *card = nm256_find_card (dev);
if (card != NULL) { char *dma_buf = nm256_getDMAbuffer (dev, physbuf); card->is_open_record = 1; card->dev_for_record = dev; nm256_startRecording (card, dma_buf, count); } }
/* * Prepare for inputting samples to DEV. * Each requested buffer will be BSIZE byes long, with a total of * BCOUNT buffers. */
static int nm256_audio_prepare_for_input(int dev, int bsize, int bcount) { struct nm256_info *card = nm256_find_card (dev);
if (card == NULL) return -ENODEV;
if (card->is_open_record && card->dev_for_record != dev) return -EBUSY;
audio_devs[dev]->dmap_in->flags |= DMA_NODMA; return 0; }
/* * Prepare for outputting samples to `dev' * * Each buffer that will be passed will be `bsize' bytes long, * with a total of `bcount' buffers. * * Called when: * 1. A trigger enables audio output (dmabuf.c:978) * 2. We get a write buffer without dma_mode setup (dmabuf.c:1152) * 3. We restart a transfer (dmabuf.c:1324) */
static int nm256_audio_prepare_for_output(int dev, int bsize, int bcount) { struct nm256_info *card = nm256_find_card (dev);
if (card == NULL) return -ENODEV;
if (card->is_open_play && card->dev_for_play != dev) return -EBUSY;
audio_devs[dev]->dmap_out->flags |= DMA_NODMA; return 0; }
/* Stop the current operations associated with DEV. */ static void nm256_audio_reset(int dev) { struct nm256_info *card = nm256_find_card (dev);
if (card != NULL) { if (card->dev_for_play == dev) stopPlay (card); if (card->dev_for_record == dev) stopRecord (card); } }
static int nm256_audio_local_qlen(int dev) { return 0; }
static struct audio_driver nm256_audio_driver = { owner: THIS_MODULE, open: nm256_audio_open, close: nm256_audio_close, output_block: nm256_audio_output_block, start_input: nm256_audio_start_input, ioctl: nm256_audio_ioctl, prepare_for_input: nm256_audio_prepare_for_input, prepare_for_output:nm256_audio_prepare_for_output, halt_io: nm256_audio_reset, local_qlen: nm256_audio_local_qlen, };
static struct pci_device_id nm256_pci_tbl[] __devinitdata = { {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0}, {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO, PCI_ANY_ID, PCI_ANY_ID, 0, 0}, {0,} }; MODULE_DEVICE_TABLE(pci, nm256_pci_tbl); MODULE_LICENSE("GPL");
struct pci_driver nm256_pci_driver = { name:"nm256_audio", id_table:nm256_pci_tbl, probe:nm256_probe, remove:nm256_remove, };
MODULE_PARM (usecache, "i"); MODULE_PARM (buffertop, "i"); MODULE_PARM (nm256_debug, "i"); MODULE_PARM (force_load, "i");
static int __init do_init_nm256(void) { printk (KERN_INFO "NeoMagic 256AV/256ZX audio driver, version 1.1p\n"); return pci_module_init(&nm256_pci_driver); }
static void __exit cleanup_nm256 (void) { pci_unregister_driver(&nm256_pci_driver); pm_unregister_all (&handle_pm_event); }
module_init(do_init_nm256); module_exit(cleanup_nm256);
/* * Local variables: * c-basic-offset: 4 * End: */
|