!C99Shell v. 1.0 pre-release build #13!

Software: Apache/2.0.54 (Unix) mod_perl/1.99_09 Perl/v5.8.0 mod_ssl/2.0.54 OpenSSL/0.9.7l DAV/2 FrontPage/5.0.2.2635 PHP/4.4.0 mod_gzip/2.0.26.1a 

uname -a: Linux snow.he.net 4.4.276-v2-mono-1 #1 SMP Wed Jul 21 11:21:17 PDT 2021 i686 

uid=99(nobody) gid=98(nobody) groups=98(nobody) 

Safe-mode: OFF (not secure)

/usr/src/linux-2.4.18-xfs-1.1/drivers/sound/   drwxr-xr-x
Free 318.37 GB of 458.09 GB (69.5%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     cs46xx.c (160.31 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/*
 *    Crystal SoundFusion CS46xx driver
 *
 *    Copyright 1998-2001 Cirrus Logic Corporation <pcaudio@crystal.cirrus.com>
 *                        <twoller@crystal.cirrus.com>
 *    Copyright 1999-2000 Jaroslav Kysela <perex@suse.cz>
 *    Copyright 2000 Alan Cox <alan@redhat.com>
 *
 *    The core of this code is taken from the ALSA project driver by 
 *    Jaroslav. Please send Jaroslav the credit for the driver and 
 *    report bugs in this port to <alan@redhat.com>
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *    Current maintainers:
 *        Cirrus Logic Corporation, Thomas Woller (tw)
 *            <twoller@crystal.cirrus.com>
 *        Nils Faerber (nf)
 *            <nils@kernelconcepts.de>
 *        Thanks to David Pollard for testing.
 *
 *    Changes:
 *    20000909-nf    Changed cs_read, cs_write and drain_dac
 *    20001025-tw    Separate Playback/Capture structs and buffers.
 *            Added Scatter/Gather support for Playback.
 *            Added Capture.
 *    20001027-nf    Port to kernel 2.4.0-test9, some clean-ups
 *            Start of powermanagement support (CS46XX_PM).
 *    20001128-tw    Add module parm for default buffer order.
 *            added DMA_GFP flag to kmalloc dma buffer allocs.
 *            backfill silence to eliminate stuttering on
 *            underruns.
 *    20001201-tw    add resyncing of swptr on underruns.
 *    20001205-tw-nf    fixed GETOSPACE ioctl() after open()
 *    20010113-tw    patch from Hans Grobler general cleanup.
 *    20010117-tw    2.4.0 pci cleanup, wrapper code for 2.2.16-2.4.0
 *    20010118-tw    basic PM support for 2.2.16+ and 2.4.0/2.4.2.
 *    20010228-dh    patch from David Huggins - cs_update_ptr recursion.
 *    20010409-tw    add hercules game theatre XP amp code.
 *    20010420-tw    cleanup powerdown/up code.
 *    20010521-tw    eliminate pops, and fixes for powerdown.
 *    20010525-tw    added fixes for thinkpads with powerdown logic.
 *    20010723-sh     patch from Horms (Simon Horman) -
 *                    SOUND_PCM_READ_BITS returns bits as set in driver
 *                    rather than a logical or of the possible values.
 *                    Various ioctls handle the case where the device
 *                    is open for reading or writing but not both better.
 *
 *    Status:
 *    Playback/Capture supported from 8k-48k.
 *    16Bit Signed LE & 8Bit Unsigned, with Mono or Stereo supported.
 *
 *    APM/PM - 2.2.x APM is enabled and functioning fine. APM can also
 *    be enabled for 2.4.x by modifying the CS46XX_ACPI_SUPPORT macro
 *    definition.
 *
 *      Hercules Game Theatre XP - the EGPIO2 pin controls the external Amp,
 *    so, use the drain/polarity to enable.  
 *    hercules_egpio_disable set to 1, will force a 0 to EGPIODR.
 *
 *    VTB Santa Cruz - the GPIO7/GPIO8 on the Secondary Codec control
 *    the external amplifier for the "back" speakers, since we do not
 *    support the secondary codec then this external amp is also not
 *    turned on.
 */
 
#include <linux/list.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/sound.h>
#include <linux/slab.h>
#include <linux/soundcard.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/smp_lock.h>
#include <linux/wrapper.h>
#include <asm/uaccess.h>
#include <asm/hardirq.h>
#include <linux/ac97_codec.h>
#include "cs46xxpm-24.h"
#include "cs46xx_wrapper-24.h"

#include "cs461x.h"

/* MIDI buffer sizes */
#define CS_MIDIINBUF  500
#define CS_MIDIOUTBUF 500

#define ADC_RUNNING    1
#define DAC_RUNNING    2

#define CS_FMT_16BIT    1        /* These are fixed in fact */
#define CS_FMT_STEREO    2
#define CS_FMT_MASK    3

#define CS_TYPE_ADC    1
#define CS_TYPE_DAC    2

#define CS_TRUE     1
#define CS_FALSE     0

#define CS_INC_USE_COUNT(m) (atomic_inc(m))
#define CS_DEC_USE_COUNT(m) (atomic_dec(m))
#define CS_DEC_AND_TEST(m) (atomic_dec_and_test(m))
#define CS_IN_USE(m) (atomic_read(m) != 0)

#define CS_DBGBREAKPOINT {__asm__("INT $3");}
/*
 *    CS461x definitions
 */
 
#define CS461X_BA0_SIZE        0x2000
#define CS461X_BA1_DATA0_SIZE    0x3000
#define CS461X_BA1_DATA1_SIZE    0x3800
#define CS461X_BA1_PRG_SIZE    0x7000
#define CS461X_BA1_REG_SIZE    0x0100

#define GOF_PER_SEC    200

#define CSDEBUG_INTERFACE 1
#define CSDEBUG 1
/*
 * Turn on/off debugging compilation by using 1/0 respectively for CSDEBUG
 *
 *
 * CSDEBUG is usual mode is set to 1, then use the
 * cs_debuglevel and cs_debugmask to turn on or off debugging.
 * Debug level of 1 has been defined to be kernel errors and info
 * that should be printed on any released driver.
 */
#if CSDEBUG
#define CS_DBGOUT(mask,level,x) if((cs_debuglevel >= (level)) && ((mask) & cs_debugmask)) {x;} 
#else
#define CS_DBGOUT(mask,level,x) 
#endif
/*
 * cs_debugmask areas
 */
#define CS_INIT         0x00000001        /* initialization and probe functions */
#define CS_ERROR     0x00000002        /* tmp debugging bit placeholder */
#define CS_INTERRUPT    0x00000004        /* interrupt handler (separate from all other) */
#define CS_FUNCTION     0x00000008        /* enter/leave functions */
#define CS_WAVE_WRITE     0x00000010        /* write information for wave */
#define CS_WAVE_READ     0x00000020        /* read information for wave */
#define CS_MIDI_WRITE     0x00000040        /* write information for midi */
#define CS_MIDI_READ     0x00000080        /* read information for midi */
#define CS_MPU401_WRITE 0x00000100        /* write information for mpu401 */
#define CS_MPU401_READ     0x00000200        /* read information for mpu401 */
#define CS_OPEN        0x00000400        /* all open functions in the driver */
#define CS_RELEASE    0x00000800        /* all release functions in the driver */
#define CS_PARMS    0x00001000        /* functional and operational parameters */
#define CS_IOCTL    0x00002000        /* ioctl (non-mixer) */
#define CS_PM        0x00004000        /* PM */
#define CS_TMP        0x10000000        /* tmp debug mask bit */

#define CS_IOCTL_CMD_SUSPEND    0x1    // suspend
#define CS_IOCTL_CMD_RESUME    0x2    // resume

#if CSDEBUG
static unsigned long cs_debuglevel=1;            /* levels range from 1-9 */
MODULE_PARM(cs_debuglevel, "i");
static unsigned long cs_debugmask=CS_INIT | CS_ERROR;    /* use CS_DBGOUT with various mask values */
MODULE_PARM(cs_debugmask, "i");
#endif
static unsigned long hercules_egpio_disable=0;  /* if non-zero set all EGPIO to 0 */
MODULE_PARM(hercules_egpio_disable, "i");
static unsigned long initdelay=700;  /* PM delay in millisecs */
MODULE_PARM(initdelay, "i");
static unsigned long powerdown=-1;  /* turn on/off powerdown processing in driver */
MODULE_PARM(powerdown, "i");
#define DMABUF_DEFAULTORDER 3
static unsigned long defaultorder=DMABUF_DEFAULTORDER;
MODULE_PARM(defaultorder, "i");

static int external_amp;
MODULE_PARM(external_amp, "i");
static int thinkpad;
MODULE_PARM(thinkpad, "i");

/*
* set the powerdown module parm to 0 to disable all 
* powerdown. also set thinkpad to 1 to disable powerdown, 
* but also to enable the clkrun functionality.
*/
static unsigned cs_powerdown=1;
static unsigned cs_laptop_wait=1;

/* An instance of the 4610 channel */
struct cs_channel 
{
    int used;
    int num;
    void *state;
};

#define CS46XX_MAJOR_VERSION "1"
#define CS46XX_MINOR_VERSION "28"

#ifdef __ia64__
#define CS46XX_ARCH             "64"    //architecture key
#else
#define CS46XX_ARCH             "32"    //architecture key
#endif

struct list_head cs46xx_devs = { &cs46xx_devs, &cs46xx_devs };

/* magic numbers to protect our data structures */
#define CS_CARD_MAGIC        0x43525553 /* "CRUS" */
#define CS_STATE_MAGIC        0x4c4f4749 /* "LOGI" */
#define NR_HW_CH        3

/* maxinum number of AC97 codecs connected, AC97 2.0 defined 4 */
#define NR_AC97        2

static const unsigned sample_size[] = { 1, 2, 2, 4 };
static const unsigned sample_shift[] = { 0, 1, 1, 2 };

/* "software" or virtual channel, an instance of opened /dev/dsp */
struct cs_state {
    unsigned int magic;
    struct cs_card *card;    /* Card info */

    /* single open lock mechanism, only used for recording */
    struct semaphore open_sem;
    wait_queue_head_t open_wait;

    /* file mode */
    mode_t open_mode;

    /* virtual channel number */
    int virt;
    
    struct dmabuf {
        /* wave sample stuff */
        unsigned int rate;
        unsigned char fmt, enable;

        /* hardware channel */
        struct cs_channel *channel;
        int pringbuf;        /* Software ring slot */
        void *pbuf;        /* 4K hardware DMA buffer */

        /* OSS buffer management stuff */
        void *rawbuf;
        dma_addr_t dma_handle;
        unsigned buforder;
        unsigned numfrag;
        unsigned fragshift;
        unsigned divisor;
        unsigned type;
        void *tmpbuff;            /* tmp buffer for sample conversions */
        dma_addr_t dmaaddr;
        dma_addr_t dmaaddr_tmpbuff;
        unsigned buforder_tmpbuff;    /* Log base 2 of size in bytes.. */

        /* our buffer acts like a circular ring */
        unsigned hwptr;        /* where dma last started, updated by update_ptr */
        unsigned swptr;        /* where driver last clear/filled, updated by read/write */
        int count;        /* bytes to be comsumed or been generated by dma machine */
        unsigned total_bytes;    /* total bytes dmaed by hardware */
        unsigned blocks;    /* total blocks */

        unsigned error;        /* number of over/underruns */
        unsigned underrun;    /* underrun pending before next write has occurred */
        wait_queue_head_t wait;    /* put process on wait queue when no more space in buffer */

        /* redundant, but makes calculations easier */
        unsigned fragsize;
        unsigned dmasize;
        unsigned fragsamples;

        /* OSS stuff */
        unsigned mapped:1;
        unsigned ready:1;
        unsigned endcleared:1;
        unsigned SGok:1;
        unsigned update_flag;
        unsigned ossfragshift;
        int ossmaxfrags;
        unsigned subdivision;
    } dmabuf;
    /* Guard against mmap/write/read races */
    struct semaphore sem;
};

struct cs_card {
    struct cs_channel channel[2];
    unsigned int magic;

    /* We keep cs461x cards in a linked list */
    struct cs_card *next;

    /* The cs461x has a certain amount of cross channel interaction
       so we use a single per card lock */
    spinlock_t lock;

    /* mixer use count */
    atomic_t mixer_use_cnt;

    /* PCI device stuff */
    struct pci_dev * pci_dev;
    struct list_head list;

    unsigned int pctl, cctl;    /* Hardware DMA flag sets */

    /* soundcore stuff */
    int dev_audio;
    int dev_midi;

    /* structures for abstraction of hardware facilities, codecs, banks and channels*/
    struct ac97_codec *ac97_codec[NR_AC97];
    struct cs_state *states[2];

    u16 ac97_features;
    
    int amplifier;            /* Amplifier control */
    void (*amplifier_ctrl)(struct cs_card *, int);
    void (*amp_init)(struct cs_card *);
    
    int active;            /* Active clocking */
    void (*active_ctrl)(struct cs_card *, int);
    
    /* hardware resources */
    unsigned long ba0_addr;
    unsigned long ba1_addr;
    u32 irq;
    
    /* mappings */
    void *ba0;
    union
    {
        struct
        {
            u8 *data0;
            u8 *data1;
            u8 *pmem;
            u8 *reg;
        } name;
        u8 *idx[4];
    } ba1;
    
    /* Function support */
    struct cs_channel *(*alloc_pcm_channel)(struct cs_card *);
    struct cs_channel *(*alloc_rec_pcm_channel)(struct cs_card *);
    void (*free_pcm_channel)(struct cs_card *, int chan);

    /* /dev/midi stuff */
    struct {
        unsigned ird, iwr, icnt;
        unsigned ord, owr, ocnt;
        wait_queue_head_t open_wait;
        wait_queue_head_t iwait;
        wait_queue_head_t owait;
        spinlock_t lock;
        unsigned char ibuf[CS_MIDIINBUF];
        unsigned char obuf[CS_MIDIOUTBUF];
        mode_t open_mode;
        struct semaphore open_sem;
    } midi;
    struct cs46xx_pm pm;
};

static int cs_open_mixdev(struct inode *inode, struct file *file);
static int cs_release_mixdev(struct inode *inode, struct file *file);
static int cs_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd,
                unsigned long arg);
static int cs_hardware_init(struct cs_card *card);
static int cs46xx_powerup(struct cs_card *card, unsigned int type);
static int cs461x_powerdown(struct cs_card *card, unsigned int type, int suspendflag);
static void cs461x_clear_serial_FIFOs(struct cs_card *card, int type);
static int cs46xx_suspend_tbl(struct pci_dev *pcidev, u32 state);
static int cs46xx_resume_tbl(struct pci_dev *pcidev);

static inline unsigned ld2(unsigned int x)
{
    unsigned r = 0;
    
    if (x >= 0x10000) {
        x >>= 16;
        r += 16;
    }
    if (x >= 0x100) {
        x >>= 8;
        r += 8;
    }
    if (x >= 0x10) {
        x >>= 4;
        r += 4;
    }
    if (x >= 4) {
        x >>= 2;
        r += 2;
    }
    if (x >= 2)
        r++;
    return r;
}

#if CSDEBUG

/* DEBUG ROUTINES */

#define SOUND_MIXER_CS_GETDBGLEVEL     _SIOWR('M',120, int)
#define SOUND_MIXER_CS_SETDBGLEVEL     _SIOWR('M',121, int)
#define SOUND_MIXER_CS_GETDBGMASK     _SIOWR('M',122, int)
#define SOUND_MIXER_CS_SETDBGMASK     _SIOWR('M',123, int)
#define SOUND_MIXER_CS_APM         _SIOWR('M',124, int)

void printioctl(unsigned int x)
{
    unsigned int i;
    unsigned char vidx;
    /* these values are incorrect for the ac97 driver, fix.
         * Index of mixtable1[] member is Device ID 
         * and must be <= SOUND_MIXER_NRDEVICES.
         * Value of array member is index into s->mix.vol[]
         */
        static const unsigned char mixtable1[SOUND_MIXER_NRDEVICES] = {
                [SOUND_MIXER_PCM]     = 1,   /* voice */
                [SOUND_MIXER_LINE1]   = 2,   /* AUX */
                [SOUND_MIXER_CD]      = 3,   /* CD */
                [SOUND_MIXER_LINE]    = 4,   /* Line */
                [SOUND_MIXER_SYNTH]   = 5,   /* FM */
                [SOUND_MIXER_MIC]     = 6,   /* Mic */
                [SOUND_MIXER_SPEAKER] = 7,   /* Speaker */
                [SOUND_MIXER_RECLEV]  = 8,   /* Recording level */
                [SOUND_MIXER_VOLUME]  = 9    /* Master Volume */
        };
        
    switch(x) 
    {
    case SOUND_MIXER_CS_GETDBGMASK:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGMASK: ") );
        break;
    case SOUND_MIXER_CS_GETDBGLEVEL:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_GETDBGLEVEL: ") );
        break;
    case SOUND_MIXER_CS_SETDBGMASK:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGMASK: ") );
        break;
    case SOUND_MIXER_CS_SETDBGLEVEL:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CS_SETDBGLEVEL: ") );
        break;
        case OSS_GETVERSION:
        CS_DBGOUT(CS_IOCTL, 4, printk("OSS_GETVERSION: ") );
        break;
        case SNDCTL_DSP_SYNC:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SYNC: ") );
        break;
        case SNDCTL_DSP_SETDUPLEX:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETDUPLEX: ") );
        break;
        case SNDCTL_DSP_GETCAPS:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETCAPS: ") );
        break;
        case SNDCTL_DSP_RESET:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_RESET: ") );
        break;
        case SNDCTL_DSP_SPEED:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SPEED: ") );
        break;
        case SNDCTL_DSP_STEREO:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_STEREO: ") );
        break;
        case SNDCTL_DSP_CHANNELS:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_CHANNELS: ") );
        break;
        case SNDCTL_DSP_GETFMTS: 
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETFMTS: ") );
        break;
        case SNDCTL_DSP_SETFMT: 
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFMT: ") );
        break;
        case SNDCTL_DSP_POST:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_POST: ") );
        break;
        case SNDCTL_DSP_GETTRIGGER:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETTRIGGER: ") );
        break;
        case SNDCTL_DSP_SETTRIGGER:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETTRIGGER: ") );
        break;
        case SNDCTL_DSP_GETOSPACE:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOSPACE: ") );
        break;
        case SNDCTL_DSP_GETISPACE:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETISPACE: ") );
        break;
        case SNDCTL_DSP_NONBLOCK:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_NONBLOCK: ") );
        break;
        case SNDCTL_DSP_GETODELAY:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETODELAY: ") );
        break;
        case SNDCTL_DSP_GETIPTR:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETIPTR: ") );
        break;
        case SNDCTL_DSP_GETOPTR:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETOPTR: ") );
        break;
        case SNDCTL_DSP_GETBLKSIZE:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_GETBLKSIZE: ") );
        break;
        case SNDCTL_DSP_SETFRAGMENT:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETFRAGMENT: ") );
        break;
        case SNDCTL_DSP_SUBDIVIDE:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SUBDIVIDE: ") );
        break;
        case SOUND_PCM_READ_RATE:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_RATE: ") );
        break;
        case SOUND_PCM_READ_CHANNELS:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_CHANNELS: ") );
        break;
        case SOUND_PCM_READ_BITS:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_BITS: ") );
        break;
        case SOUND_PCM_WRITE_FILTER:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_WRITE_FILTER: ") );
        break;
        case SNDCTL_DSP_SETSYNCRO:
        CS_DBGOUT(CS_IOCTL, 4, printk("SNDCTL_DSP_SETSYNCRO: ") );
        break;
        case SOUND_PCM_READ_FILTER:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_PCM_READ_FILTER: ") );
        break;

        case SOUND_MIXER_PRIVATE1:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE1: ") );
        break;
        case SOUND_MIXER_PRIVATE2:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE2: ") );
        break;
        case SOUND_MIXER_PRIVATE3:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE3: ") );
        break;
        case SOUND_MIXER_PRIVATE4:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE4: ") );
        break;
        case SOUND_MIXER_PRIVATE5:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_PRIVATE5: ") );
        break;
        case SOUND_MIXER_INFO:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_INFO: ") );
        break;
        case SOUND_OLD_MIXER_INFO:
        CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_OLD_MIXER_INFO: ") );
        break;

    default:
        switch (_IOC_NR(x)) 
        {
            case SOUND_MIXER_VOLUME:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_VOLUME: ") );
                break;
            case SOUND_MIXER_SPEAKER:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SPEAKER: ") );
                break;
            case SOUND_MIXER_RECLEV:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECLEV: ") );
                break;
            case SOUND_MIXER_MIC:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_MIC: ") );
                break;
            case SOUND_MIXER_SYNTH:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_SYNTH: ") );
                break;
            case SOUND_MIXER_RECSRC: 
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECSRC: ") );
                break;
            case SOUND_MIXER_DEVMASK:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_DEVMASK: ") );
                break;
            case SOUND_MIXER_RECMASK:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_RECMASK: ") );
                break;
            case SOUND_MIXER_STEREODEVS: 
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_STEREODEVS: ") );
                break;
            case SOUND_MIXER_CAPS:
                CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_CAPS:") );
                break;
            default:
                i = _IOC_NR(x);
                if (i >= SOUND_MIXER_NRDEVICES || !(vidx = mixtable1[i]))
                {
                    CS_DBGOUT(CS_IOCTL, 4, printk("UNKNOWN IOCTL: 0x%.8x NR=%d ",x,i) );
                }
                else
                {
                    CS_DBGOUT(CS_IOCTL, 4, printk("SOUND_MIXER_IOCTL AC9x: 0x%.8x NR=%d ",
                            x,i) );
                }
                break;
        }
    }
    CS_DBGOUT(CS_IOCTL, 4, printk("command = 0x%x IOC_NR=%d\n",x, _IOC_NR(x)) );
}
#endif

/*
 *  common I/O routines
 */

static void cs461x_poke(struct cs_card *codec, unsigned long reg, unsigned int val)
{
    writel(val, codec->ba1.idx[(reg >> 16) & 3]+(reg&0xffff));
}

static unsigned int cs461x_peek(struct cs_card *codec, unsigned long reg)
{
    return readl(codec->ba1.idx[(reg >> 16) & 3]+(reg&0xffff));
}

static void cs461x_pokeBA0(struct cs_card *codec, unsigned long reg, unsigned int val)
{
    writel(val, codec->ba0+reg);
}

static unsigned int cs461x_peekBA0(struct cs_card *codec, unsigned long reg)
{
    return readl(codec->ba0+reg);
}


static u16 cs_ac97_get(struct ac97_codec *dev, u8 reg);
static void cs_ac97_set(struct ac97_codec *dev, u8 reg, u16 data);

static struct cs_channel *cs_alloc_pcm_channel(struct cs_card *card)
{
    if(card->channel[1].used==1)
        return NULL;
    card->channel[1].used=1;
    card->channel[1].num=1;
    return &card->channel[1];
}

static struct cs_channel *cs_alloc_rec_pcm_channel(struct cs_card *card)
{
    if(card->channel[0].used==1)
        return NULL;
    card->channel[0].used=1;
    card->channel[0].num=0;
    return &card->channel[0];
}

static void cs_free_pcm_channel(struct cs_card *card, int channel)
{
    card->channel[channel].state = NULL;
    card->channel[channel].used=0;
}

/*
 * setup a divisor value to help with conversion from
 * 16bit Stereo, down to 8bit stereo/mono or 16bit mono.
 * assign a divisor of 1 if using 16bit Stereo as that is
 * the only format that the static image will capture.
 */
static void cs_set_divisor(struct dmabuf *dmabuf)
{
    if(dmabuf->type == CS_TYPE_DAC)
        dmabuf->divisor = 1;
    else if( !(dmabuf->fmt & CS_FMT_STEREO) && 
        (dmabuf->fmt & CS_FMT_16BIT))
        dmabuf->divisor = 2;
    else if( (dmabuf->fmt & CS_FMT_STEREO) && 
        !(dmabuf->fmt & CS_FMT_16BIT))
        dmabuf->divisor = 2;
    else if( !(dmabuf->fmt & CS_FMT_STEREO) && 
        !(dmabuf->fmt & CS_FMT_16BIT))
        dmabuf->divisor = 4;
    else
        dmabuf->divisor = 1;

    CS_DBGOUT(CS_PARMS | CS_FUNCTION, 8, printk(
        "cs46xx: cs_set_divisor()- %s %d\n",
            (dmabuf->type == CS_TYPE_ADC) ? "ADC" : "DAC", 
            dmabuf->divisor) );
}

/*
* mute some of the more prevalent registers to avoid popping.
*/
static void cs_mute(struct cs_card *card, int state) 
{
    struct ac97_codec *dev=card->ac97_codec[0];

    CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs46xx: cs_mute()+ %s\n",
        (state == CS_TRUE) ? "Muting" : "UnMuting") );

    if(state == CS_TRUE)
    {
    /*
    * fix pops when powering up on thinkpads
    */
        card->pm.u32AC97_master_volume = (u32)cs_ac97_get( dev, 
                (u8)BA0_AC97_MASTER_VOLUME); 
        card->pm.u32AC97_headphone_volume = (u32)cs_ac97_get(dev, 
                (u8)BA0_AC97_HEADPHONE_VOLUME); 
        card->pm.u32AC97_master_volume_mono = (u32)cs_ac97_get(dev, 
                (u8)BA0_AC97_MASTER_VOLUME_MONO); 
        card->pm.u32AC97_pcm_out_volume = (u32)cs_ac97_get(dev, 
                (u8)BA0_AC97_PCM_OUT_VOLUME);
            
        cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME, 0x8000);
        cs_ac97_set(dev, (u8)BA0_AC97_HEADPHONE_VOLUME, 0x8000);
        cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME_MONO, 0x8000);
        cs_ac97_set(dev, (u8)BA0_AC97_PCM_OUT_VOLUME, 0x8000);
    }
    else
    {
        cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME, card->pm.u32AC97_master_volume);
        cs_ac97_set(dev, (u8)BA0_AC97_HEADPHONE_VOLUME, card->pm.u32AC97_headphone_volume);
        cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME_MONO, card->pm.u32AC97_master_volume_mono);
        cs_ac97_set(dev, (u8)BA0_AC97_PCM_OUT_VOLUME, card->pm.u32AC97_pcm_out_volume);
    }
    CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs46xx: cs_mute()-\n"));
}

/* set playback sample rate */
static unsigned int cs_set_dac_rate(struct cs_state * state, unsigned int rate)
{    
    struct dmabuf *dmabuf = &state->dmabuf;
    unsigned int tmp1, tmp2;
    unsigned int phiIncr;
    unsigned int correctionPerGOF, correctionPerSec;
    unsigned long flags;

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_dac_rate()+ %d\n",rate) );

    /*
     *  Compute the values used to drive the actual sample rate conversion.
     *  The following formulas are being computed, using inline assembly
     *  since we need to use 64 bit arithmetic to compute the values:
     *
     *  phiIncr = floor((Fs,in * 2^26) / Fs,out)
     *  correctionPerGOF = floor((Fs,in * 2^26 - Fs,out * phiIncr) /
         *                                   GOF_PER_SEC)
         *  ulCorrectionPerSec = Fs,in * 2^26 - Fs,out * phiIncr -M
         *                       GOF_PER_SEC * correctionPerGOF
     *
     *  i.e.
     *
     *  phiIncr:other = dividend:remainder((Fs,in * 2^26) / Fs,out)
     *  correctionPerGOF:correctionPerSec =
     *      dividend:remainder(ulOther / GOF_PER_SEC)
     */
    tmp1 = rate << 16;
    phiIncr = tmp1 / 48000;
    tmp1 -= phiIncr * 48000;
    tmp1 <<= 10;
    phiIncr <<= 10;
    tmp2 = tmp1 / 48000;
    phiIncr += tmp2;
    tmp1 -= tmp2 * 48000;
    correctionPerGOF = tmp1 / GOF_PER_SEC;
    tmp1 -= correctionPerGOF * GOF_PER_SEC;
    correctionPerSec = tmp1;

    /*
     *  Fill in the SampleRateConverter control block.
     */
     
    spin_lock_irqsave(&state->card->lock, flags);
    cs461x_poke(state->card, BA1_PSRC,
      ((correctionPerSec << 16) & 0xFFFF0000) | (correctionPerGOF & 0xFFFF));
    cs461x_poke(state->card, BA1_PPI, phiIncr);
    spin_unlock_irqrestore(&state->card->lock, flags);
    dmabuf->rate = rate;
    
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_dac_rate()- %d\n",rate) );
    return rate;
}

/* set recording sample rate */
static unsigned int cs_set_adc_rate(struct cs_state * state, unsigned int rate)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    struct cs_card *card = state->card;
    unsigned int phiIncr, coeffIncr, tmp1, tmp2;
    unsigned int correctionPerGOF, correctionPerSec, initialDelay;
    unsigned int frameGroupLength, cnt;
    unsigned long flags;
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_adc_rate()+ %d\n",rate) );

    /*
     *  We can only decimate by up to a factor of 1/9th the hardware rate.
     *  Correct the value if an attempt is made to stray outside that limit.
     */
    if ((rate * 9) < 48000)
        rate = 48000 / 9;

    /*
     *  We can not capture at at rate greater than the Input Rate (48000).
     *  Return an error if an attempt is made to stray outside that limit.
     */
    if (rate > 48000)
        rate = 48000;

    /*
     *  Compute the values used to drive the actual sample rate conversion.
     *  The following formulas are being computed, using inline assembly
     *  since we need to use 64 bit arithmetic to compute the values:
     *
     *     coeffIncr = -floor((Fs,out * 2^23) / Fs,in)
     *     phiIncr = floor((Fs,in * 2^26) / Fs,out)
     *     correctionPerGOF = floor((Fs,in * 2^26 - Fs,out * phiIncr) /
     *                                GOF_PER_SEC)
     *     correctionPerSec = Fs,in * 2^26 - Fs,out * phiIncr -
     *                          GOF_PER_SEC * correctionPerGOF
     *     initialDelay = ceil((24 * Fs,in) / Fs,out)
     *
     * i.e.
     *
     *     coeffIncr = neg(dividend((Fs,out * 2^23) / Fs,in))
     *     phiIncr:ulOther = dividend:remainder((Fs,in * 2^26) / Fs,out)
     *     correctionPerGOF:correctionPerSec =
     *         dividend:remainder(ulOther / GOF_PER_SEC)
     *     initialDelay = dividend(((24 * Fs,in) + Fs,out - 1) / Fs,out)
     */

    tmp1 = rate << 16;
    coeffIncr = tmp1 / 48000;
    tmp1 -= coeffIncr * 48000;
    tmp1 <<= 7;
    coeffIncr <<= 7;
    coeffIncr += tmp1 / 48000;
    coeffIncr ^= 0xFFFFFFFF;
    coeffIncr++;
    tmp1 = 48000 << 16;
    phiIncr = tmp1 / rate;
    tmp1 -= phiIncr * rate;
    tmp1 <<= 10;
    phiIncr <<= 10;
    tmp2 = tmp1 / rate;
    phiIncr += tmp2;
    tmp1 -= tmp2 * rate;
    correctionPerGOF = tmp1 / GOF_PER_SEC;
    tmp1 -= correctionPerGOF * GOF_PER_SEC;
    correctionPerSec = tmp1;
    initialDelay = ((48000 * 24) + rate - 1) / rate;

    /*
     *  Fill in the VariDecimate control block.
     */
    spin_lock_irqsave(&card->lock, flags);
    cs461x_poke(card, BA1_CSRC,
        ((correctionPerSec << 16) & 0xFFFF0000) | (correctionPerGOF & 0xFFFF));
    cs461x_poke(card, BA1_CCI, coeffIncr);
    cs461x_poke(card, BA1_CD,
        (((BA1_VARIDEC_BUF_1 + (initialDelay << 2)) << 16) & 0xFFFF0000) | 0x80);
    cs461x_poke(card, BA1_CPI, phiIncr);
    spin_unlock_irqrestore(&card->lock, flags);

    /*
     *  Figure out the frame group length for the write back task.  Basically,
     *  this is just the factors of 24000 (2^6*3*5^3) that are not present in
     *  the output sample rate.
     */
    frameGroupLength = 1;
    for (cnt = 2; cnt <= 64; cnt *= 2) {
        if (((rate / cnt) * cnt) != rate)
            frameGroupLength *= 2;
    }
    if (((rate / 3) * 3) != rate) {
        frameGroupLength *= 3;
    }
    for (cnt = 5; cnt <= 125; cnt *= 5) {
        if (((rate / cnt) * cnt) != rate) 
            frameGroupLength *= 5;
        }

    /*
     * Fill in the WriteBack control block.
     */
    spin_lock_irqsave(&card->lock, flags);
    cs461x_poke(card, BA1_CFG1, frameGroupLength);
    cs461x_poke(card, BA1_CFG2, (0x00800000 | frameGroupLength));
    cs461x_poke(card, BA1_CCST, 0x0000FFFF);
    cs461x_poke(card, BA1_CSPB, ((65536 * rate) / 24000));
    cs461x_poke(card, (BA1_CSPB + 4), 0x0000FFFF);
    spin_unlock_irqrestore(&card->lock, flags);
    dmabuf->rate = rate;
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_set_adc_rate()- %d\n",rate) );
    return rate;
}

/* prepare channel attributes for playback */ 
static void cs_play_setup(struct cs_state *state)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    struct cs_card *card = state->card;
        unsigned int tmp, Count, playFormat;

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_play_setup()+\n") );
        cs461x_poke(card, BA1_PVOL, 0x80008000);
        if(!dmabuf->SGok)
               cs461x_poke(card, BA1_PBA, virt_to_bus(dmabuf->pbuf));
    
        Count = 4;                                                          
        playFormat=cs461x_peek(card, BA1_PFIE);                             
        if ((dmabuf->fmt & CS_FMT_STEREO)) {                                
                playFormat &= ~DMA_RQ_C2_AC_MONO_TO_STEREO;                 
                Count *= 2;                                                 
        }                                                                   
        else                                                                
                playFormat |= DMA_RQ_C2_AC_MONO_TO_STEREO;                  
                                                                            
        if ((dmabuf->fmt & CS_FMT_16BIT)) {                                 
                playFormat &= ~(DMA_RQ_C2_AC_8_TO_16_BIT                    
                           | DMA_RQ_C2_AC_SIGNED_CONVERT);                  
                Count *= 2;                                                 
        }                                                                   
        else                                                                
                playFormat |= (DMA_RQ_C2_AC_8_TO_16_BIT                     
                           | DMA_RQ_C2_AC_SIGNED_CONVERT);                  
                                                                            
        cs461x_poke(card, BA1_PFIE, playFormat);                            
                                                                            
        tmp = cs461x_peek(card, BA1_PDTC);                                  
        tmp &= 0xfffffe00;                                                  
        cs461x_poke(card, BA1_PDTC, tmp | --Count);                         

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_play_setup()-\n") );

}

struct InitStruct
{
    u32 long off;
    u32 long val;
} InitArray[] = { {0x00000040, 0x3fc0000f},
                  {0x0000004c, 0x04800000},

                  {0x000000b3, 0x00000780},
                  {0x000000b7, 0x00000000},
                  {0x000000bc, 0x07800000},

                  {0x000000cd, 0x00800000},
                };

/*
 * "SetCaptureSPValues()" -- Initialize record task values before each
 *     capture startup.  
 */
void SetCaptureSPValues(struct cs_card *card)
{
    unsigned i, offset;
    CS_DBGOUT(CS_FUNCTION, 8, printk("cs46xx: SetCaptureSPValues()+\n") );
    for(i=0; i<sizeof(InitArray)/sizeof(struct InitStruct); i++)
    {
        offset = InitArray[i].off*4; /* 8bit to 32bit offset value */
        cs461x_poke(card, offset, InitArray[i].val );
    }
    CS_DBGOUT(CS_FUNCTION, 8, printk("cs46xx: SetCaptureSPValues()-\n") );
}

/* prepare channel attributes for recording */
static void cs_rec_setup(struct cs_state *state)
{
    struct cs_card *card = state->card;
    struct dmabuf *dmabuf = &state->dmabuf;
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_rec_setup()+\n") );

    SetCaptureSPValues(card);

    /*
     * set the attenuation to 0dB 
     */
    cs461x_poke(card, BA1_CVOL, 0x80008000);

    /*
     * set the physical address of the capture buffer into the SP
     */
    cs461x_poke(card, BA1_CBA, virt_to_bus(dmabuf->rawbuf));

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_rec_setup()-\n") );
}


/* get current playback/recording dma buffer pointer (byte offset from LBA),
   called with spinlock held! */
   
static inline unsigned cs_get_dma_addr(struct cs_state *state)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    u32 offset;
    
    if ( (!(dmabuf->enable & DAC_RUNNING)) &&
         (!(dmabuf->enable & ADC_RUNNING) ) )
    {
        CS_DBGOUT(CS_ERROR, 2, printk(
            "cs46xx: ERROR cs_get_dma_addr(): not enabled \n") );
        return 0;
    }
        
    /*
     * ganularity is byte boundry, good part.
     */
    if(dmabuf->enable & DAC_RUNNING)
    {
        offset = cs461x_peek(state->card, BA1_PBA);                                  
    }
    else /* ADC_RUNNING must be set */
    {
        offset = cs461x_peek(state->card, BA1_CBA);                                  
    }
    CS_DBGOUT(CS_PARMS | CS_FUNCTION, 9, 
        printk("cs46xx: cs_get_dma_addr() %d\n",offset) );
    offset = (u32)bus_to_virt((unsigned long)offset) - (u32)dmabuf->rawbuf;
    CS_DBGOUT(CS_PARMS | CS_FUNCTION, 8, 
        printk("cs46xx: cs_get_dma_addr()- %d\n",offset) );
    return offset;
}

static void resync_dma_ptrs(struct cs_state *state)
{
    struct dmabuf *dmabuf;
    
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: resync_dma_ptrs()+ \n") );
    if(state)
    {
        dmabuf = &state->dmabuf;
        dmabuf->hwptr=dmabuf->swptr = 0;
        dmabuf->pringbuf = 0;
    }
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: resync_dma_ptrs()- \n") );
}
    
/* Stop recording (lock held) */
static inline void __stop_adc(struct cs_state *state)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    struct cs_card *card = state->card;
    unsigned int tmp;
    
    dmabuf->enable &= ~ADC_RUNNING;
    
    tmp = cs461x_peek(card, BA1_CCTL);
    tmp &= 0xFFFF0000;
    cs461x_poke(card, BA1_CCTL, tmp );
}

static void stop_adc(struct cs_state *state)
{
    unsigned long flags;

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_adc()+ \n") );
    spin_lock_irqsave(&state->card->lock, flags);
    __stop_adc(state);
    spin_unlock_irqrestore(&state->card->lock, flags);
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_adc()- \n") );
}

static void start_adc(struct cs_state *state)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    struct cs_card *card = state->card;
    unsigned long flags;
    unsigned int tmp;

    spin_lock_irqsave(&card->lock, flags);
    if (!(dmabuf->enable & ADC_RUNNING) && 
         ((dmabuf->mapped || dmabuf->count < (signed)dmabuf->dmasize) 
           && dmabuf->ready) && 
           ((card->pm.flags & CS46XX_PM_IDLE) || 
            (card->pm.flags & CS46XX_PM_RESUMED)) )
    {
        dmabuf->enable |= ADC_RUNNING;
        cs_set_divisor(dmabuf);
        tmp = cs461x_peek(card, BA1_CCTL);
        tmp &= 0xFFFF0000;
        tmp |= card->cctl;
        CS_DBGOUT(CS_FUNCTION, 2, printk(
            "cs46xx: start_adc() poke 0x%x \n",tmp) );
        cs461x_poke(card, BA1_CCTL, tmp);
    }
    spin_unlock_irqrestore(&card->lock, flags);
}

/* stop playback (lock held) */
static inline void __stop_dac(struct cs_state *state)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    struct cs_card *card = state->card;
    unsigned int tmp;

    dmabuf->enable &= ~DAC_RUNNING;
    
    tmp=cs461x_peek(card, BA1_PCTL);
    tmp&=0xFFFF;
    cs461x_poke(card, BA1_PCTL, tmp);
}

static void stop_dac(struct cs_state *state)
{
    unsigned long flags;

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_dac()+ \n") );
    spin_lock_irqsave(&state->card->lock, flags);
    __stop_dac(state);
    spin_unlock_irqrestore(&state->card->lock, flags);
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: stop_dac()- \n") );
}    

static void start_dac(struct cs_state *state)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    struct cs_card *card = state->card;
    unsigned long flags;
    int tmp;

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: start_dac()+ \n") );
    spin_lock_irqsave(&card->lock, flags);
    if (!(dmabuf->enable & DAC_RUNNING) && 
        ((dmabuf->mapped || dmabuf->count > 0) && dmabuf->ready) &&
           ((card->pm.flags & CS46XX_PM_IDLE) || 
            (card->pm.flags & CS46XX_PM_RESUMED)) )
    {
        dmabuf->enable |= DAC_RUNNING;
        tmp = cs461x_peek(card, BA1_PCTL);
        tmp &= 0xFFFF;
        tmp |= card->pctl;
        CS_DBGOUT(CS_PARMS, 6, printk(
            "cs46xx: start_dac() poke card=0x%.08x tmp=0x%.08x addr=0x%.08x \n",
            (unsigned)card, (unsigned)tmp, 
            (unsigned)card->ba1.idx[(BA1_PCTL >> 16) & 3]+(BA1_PCTL&0xffff) ) );
        cs461x_poke(card, BA1_PCTL, tmp);
    }
    spin_unlock_irqrestore(&card->lock, flags);
    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: start_dac()- \n") );
}

#define DMABUF_MINORDER 1

/*
 * allocate DMA buffer, playback and recording buffers are separate.
 */
static int alloc_dmabuf(struct cs_state *state)
{

    struct cs_card *card=state->card;
    struct dmabuf *dmabuf = &state->dmabuf;
    void *rawbuf = NULL;
    void *tmpbuff = NULL;
    int order;
    struct page *map, *mapend;
    unsigned long df;
    
    dmabuf->ready  = dmabuf->mapped = 0;
    dmabuf->SGok = 0;
/*
* check for order within limits, but do not overwrite value.
*/
    if((defaultorder > 1) && (defaultorder < 12))
        df = defaultorder;
    else
        df = 2;    

    for (order = df; order >= DMABUF_MINORDER; order--)
        if ( (rawbuf = (void *) pci_alloc_consistent(
            card->pci_dev, PAGE_SIZE << order, &dmabuf->dmaaddr)))
                break;
    if (!rawbuf) {
        CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
            "cs46xx: alloc_dmabuf(): unable to allocate rawbuf\n"));
        return -ENOMEM;
    }
    dmabuf->buforder = order;
    dmabuf->rawbuf = rawbuf;
    // Now mark the pages as reserved; otherwise the 
    // remap_page_range() in cs46xx_mmap doesn't work.
    // 1. get index to last page in mem_map array for rawbuf.
    mapend = virt_to_page(dmabuf->rawbuf + 
        (PAGE_SIZE << dmabuf->buforder) - 1);

    // 2. mark each physical page in range as 'reserved'.
    for (map = virt_to_page(dmabuf->rawbuf); map <= mapend; map++)
        cs4x_mem_map_reserve(map);

    CS_DBGOUT(CS_PARMS, 9, printk("cs46xx: alloc_dmabuf(): allocated %ld (order = %d) bytes at %p\n",
           PAGE_SIZE << order, order, rawbuf) );

/*
*  only allocate the conversion buffer for the ADC
*/
    if(dmabuf->type == CS_TYPE_DAC)
    {
        dmabuf->tmpbuff = NULL;
        dmabuf->buforder_tmpbuff = 0;
        return 0;
    }
/*
 * now the temp buffer for 16/8 conversions
 */

    tmpbuff = (void *) pci_alloc_consistent(
        card->pci_dev, PAGE_SIZE << order, &dmabuf->dmaaddr_tmpbuff);

    if (!tmpbuff)
        return -ENOMEM;
    CS_DBGOUT(CS_PARMS, 9, printk("cs46xx: allocated %ld (order = %d) bytes at %p\n",
           PAGE_SIZE << order, order, tmpbuff) );

    dmabuf->tmpbuff = tmpbuff;
    dmabuf->buforder_tmpbuff = order;
    
    // Now mark the pages as reserved; otherwise the 
    // remap_page_range() in cs46xx_mmap doesn't work.
    // 1. get index to last page in mem_map array for rawbuf.
    mapend = virt_to_page(dmabuf->tmpbuff + 
        (PAGE_SIZE << dmabuf->buforder_tmpbuff) - 1);

    // 2. mark each physical page in range as 'reserved'.
    for (map = virt_to_page(dmabuf->tmpbuff); map <= mapend; map++)
        cs4x_mem_map_reserve(map);
    return 0;
}

/* free DMA buffer */
static void dealloc_dmabuf(struct cs_state *state)
{
    struct dmabuf *dmabuf = &state->dmabuf;
    struct page *map, *mapend;

    if (dmabuf->rawbuf) {
        // Undo prog_dmabuf()'s marking the pages as reserved 
        mapend = virt_to_page(dmabuf->rawbuf + 
                (PAGE_SIZE << dmabuf->buforder) - 1);
        for (map = virt_to_page(dmabuf->rawbuf); map <= mapend; map++)
            cs4x_mem_map_unreserve(map);
        free_dmabuf(state->card, dmabuf);
    }

    if (dmabuf->tmpbuff) {
        // Undo prog_dmabuf()'s marking the pages as reserved 
        mapend = virt_to_page(dmabuf->tmpbuff +
                (PAGE_SIZE << dmabuf->buforder_tmpbuff) - 1);
        for (map = virt_to_page(dmabuf->tmpbuff); map <= mapend; map++)
            cs4x_mem_map_unreserve(map);
        free_dmabuf2(state->card, dmabuf);
    }

    dmabuf->rawbuf = NULL;
    dmabuf->tmpbuff = NULL;
    dmabuf->mapped = dmabuf->ready = 0;
    dmabuf->SGok = 0;
}

static int __prog_dmabuf(struct cs_state *state)
{
        struct dmabuf *dmabuf = &state->dmabuf;
        unsigned long flags;
        unsigned long allocated_pages, allocated_bytes;                     
        unsigned long tmp1, tmp2, fmt=0;                                           
        unsigned long *ptmp = (unsigned long *) dmabuf->pbuf;               
        unsigned long SGarray[9], nSGpages=0;                               
        int ret;

    CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()+ \n"));
/*
 * check for CAPTURE and use only non-sg for initial release
 */
    if(dmabuf->type == CS_TYPE_ADC)
    {
        CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf() ADC\n"));
        /* 
         * add in non-sg support for capture.
         */
        spin_lock_irqsave(&state->card->lock, flags);
    /* add code to reset the rawbuf memory. TRW */
        resync_dma_ptrs(state);
        dmabuf->total_bytes = dmabuf->blocks = 0;
        dmabuf->count = dmabuf->error = dmabuf->underrun = 0;

        dmabuf->SGok = 0;                                                   

        spin_unlock_irqrestore(&state->card->lock, flags);

        /* allocate DMA buffer if not allocated yet */
        if (!dmabuf->rawbuf || !dmabuf->tmpbuff)
            if ((ret = alloc_dmabuf(state)))
                return ret; 
    /*
     * static image only supports 16Bit signed, stereo - hard code fmt
     */
        fmt = CS_FMT_16BIT | CS_FMT_STEREO;

        dmabuf->numfrag = 2;                                        
        dmabuf->fragsize = 2048;                                    
        dmabuf->fragsamples = 2048 >> sample_shift[fmt];    
        dmabuf->dmasize = 4096;                                     
        dmabuf->fragshift = 11;                                     

        memset(dmabuf->rawbuf, (fmt & CS_FMT_16BIT) ? 0 : 0x80,
               dmabuf->dmasize);
            memset(dmabuf->tmpbuff, (fmt & CS_FMT_16BIT) ? 0 : 0x80, 
            PAGE_SIZE<<dmabuf->buforder_tmpbuff);      

        /*
         *      Now set up the ring
         */

        spin_lock_irqsave(&state->card->lock, flags);
        cs_rec_setup(state);
        spin_unlock_irqrestore(&state->card->lock, flags);

        /* set the ready flag for the dma buffer */
        dmabuf->ready = 1;

        CS_DBGOUT(CS_PARMS, 4, printk(
            "cs46xx: prog_dmabuf(): CAPTURE rate=%d fmt=0x%x numfrag=%d "
            "fragsize=%d dmasize=%d\n",
                dmabuf->rate, dmabuf->fmt, dmabuf->numfrag,
                dmabuf->fragsize, dmabuf->dmasize) );

        CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()- 0 \n"));
        return 0;
    }
    else if (dmabuf->type == CS_TYPE_DAC)
    {
    /*
     * Must be DAC
     */
        CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf() DAC\n"));
        spin_lock_irqsave(&state->card->lock, flags);
        resync_dma_ptrs(state);
        dmabuf->total_bytes = dmabuf->blocks = 0;
        dmabuf->count = dmabuf->error = dmabuf->underrun = 0;

        dmabuf->SGok = 0;                                                   

        spin_unlock_irqrestore(&state->card->lock, flags);

        /* allocate DMA buffer if not allocated yet */
        if (!dmabuf->rawbuf)
            if ((ret = alloc_dmabuf(state)))
                return ret;

        allocated_pages = 1 << dmabuf->buforder;                            
        allocated_bytes = allocated_pages*PAGE_SIZE;                        
                                            
        if(allocated_pages < 2)                                             
        {
            CS_DBGOUT(CS_FUNCTION, 4, printk(
                "cs46xx: prog_dmabuf() Error: allocated_pages too small (%d)\n",
                (unsigned)allocated_pages));
            return -ENOMEM;
        }
                                            
        /* Use all the pages allocated, fragsize 4k. */
        /* Use 'pbuf' for S/G page map table. */
        dmabuf->SGok = 1;           /* Use S/G. */

        nSGpages = allocated_bytes/4096;    /* S/G pages always 4k. */
                                            
             /* Set up S/G variables. */
        *ptmp = virt_to_bus(dmabuf->rawbuf);                                
        *(ptmp+1) = 0x00000008;                                             
        for(tmp1= 1; tmp1 < nSGpages; tmp1++) {                             
            *(ptmp+2*tmp1) = virt_to_bus( (dmabuf->rawbuf)+4096*tmp1);  
            if( tmp1 == nSGpages-1)                                     
                tmp2 = 0xbfff0000;
            else                                                        
                tmp2 = 0x80000000+8*(tmp1+1);                       
            *(ptmp+2*tmp1+1) = tmp2;                                    
        }                                                                   
        SGarray[0] = 0x82c0200d;                                            
        SGarray[1] = 0xffff0000;                                            
        SGarray[2] = *ptmp;                                                 
        SGarray[3] = 0x00010600;                                            
        SGarray[4] = *(ptmp+2);                                             
        SGarray[5] = 0x80000010;                                            
        SGarray[6] = *ptmp;                                                 
        SGarray[7] = *(ptmp+2);                                             
        SGarray[8] = (virt_to_bus(dmabuf->pbuf) & 0xffff000) | 0x10;        

        if (dmabuf->SGok) {                                                 
            dmabuf->numfrag = nSGpages;                                 
            dmabuf->fragsize = 4096;                                    
            dmabuf->fragsamples = 4096 >> sample_shift[dmabuf->fmt];    
            dmabuf->fragshift = 12;                                     
            dmabuf->dmasize = dmabuf->numfrag*4096;                     
        }                                                                   
        else {                                                              
            SGarray[0] = 0xf2c0000f;                                    
            SGarray[1] = 0x00000200;                                    
            SGarray[2] = 0;                                             
            SGarray[3] = 0x00010600;                                    
            SGarray[4]=SGarray[5]=SGarray[6]=SGarray[7]=SGarray[8] = 0; 
            dmabuf->numfrag = 2;                                        
            dmabuf->fragsize = 2048;                                    
            dmabuf->fragsamples = 2048 >> sample_shift[dmabuf->fmt];    
            dmabuf->dmasize = 4096;                                     
            dmabuf->fragshift = 11;                                     
        }
        for(tmp1 = 0; tmp1 < sizeof(SGarray)/4; tmp1++)                     
            cs461x_poke( state->card, BA1_PDTC+tmp1*4, SGarray[tmp1]);  

        memset(dmabuf->rawbuf, (dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80,
               dmabuf->dmasize);

        /*
         *      Now set up the ring
         */

        spin_lock_irqsave(&state->card->lock, flags);
        cs_play_setup(state);
        spin_unlock_irqrestore(&state->card->lock, flags);

        /* set the ready flag for the dma buffer */
        dmabuf->ready = 1;

        CS_DBGOUT(CS_PARMS, 4, printk(
            "cs46xx: prog_dmabuf(): PLAYBACK rate=%d fmt=0x%x numfrag=%d "
            "fragsize=%d dmasize=%d\n",
                dmabuf->rate, dmabuf->fmt, dmabuf->numfrag,
                dmabuf->fragsize, dmabuf->dmasize) );

        CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()- \n"));
        return 0;
    }
    else
    {
        CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: prog_dmabuf()- Invalid Type %d\n",
            dmabuf->type));
    }
    return 1;
}

static int prog_dmabuf(struct cs_state *state)
{
    int ret;
    
    down(&state->sem);
    ret = __prog_dmabuf(state);
    up(&state->sem);
    
    return ret;
}

static void cs_clear_tail(struct cs_state *state)
{
}

static int drain_dac(struct cs_state *state, int nonblock)
{
    DECLARE_WAITQUEUE(wait, current);
    struct dmabuf *dmabuf = &state->dmabuf;
    struct cs_card *card=state->card;
    unsigned long flags;
    unsigned long tmo;
    int count;

    CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()+ \n"));
    if (dmabuf->mapped || !dmabuf->ready)
    {
        CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()- 0, not ready\n"));
        return 0;
    }

    add_wait_queue(&dmabuf->wait, &wait);
    for (;;) {
        /* It seems that we have to set the current state to TASK_INTERRUPTIBLE
           every time to make the process really go to sleep */
        current->state = TASK_INTERRUPTIBLE;

        spin_lock_irqsave(&state->card->lock, flags);
        count = dmabuf->count;
        spin_unlock_irqrestore(&state->card->lock, flags);

        if (count <= 0)
            break;

        if (signal_pending(current))
            break;

        if (nonblock) {
            remove_wait_queue(&dmabuf->wait, &wait);
            current->state = TASK_RUNNING;
            return -EBUSY;
        }

        tmo = (dmabuf->dmasize * HZ) / dmabuf->rate;
        tmo >>= sample_shift[dmabuf->fmt];
        tmo += (2048*HZ)/dmabuf->rate;
        
        if (!schedule_timeout(tmo ? tmo : 1) && tmo){
            printk(KERN_ERR "cs46xx: drain_dac, dma timeout? %d\n", count);
            break;
        }
    }
    remove_wait_queue(&dmabuf->wait, &wait);
    current->state = TASK_RUNNING;
    if (signal_pending(current))
    {
        CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()- -ERESTARTSYS\n"));
        /*
        * set to silence and let that clear the fifos.
        */
        cs461x_clear_serial_FIFOs(card, CS_TYPE_DAC);
        return -ERESTARTSYS;
    }

    CS_DBGOUT(CS_FUNCTION, 4, printk("cs46xx: drain_dac()- 0\n"));
    return 0;
}


/* update buffer manangement pointers, especially, dmabuf->count and dmabuf->hwptr */
static void cs_update_ptr(struct cs_card *card, int wake)
{
    struct cs_state *state;
    struct dmabuf *dmabuf;
    unsigned hwptr;
    int diff;

    /* error handling and process wake up for ADC */
    state = card->states[0];
    if(state)
    {
        dmabuf = &state->dmabuf;
        if (dmabuf->enable & ADC_RUNNING) {
            /* update hardware pointer */
            hwptr = cs_get_dma_addr(state);

            diff = (dmabuf->dmasize + hwptr - dmabuf->hwptr) % dmabuf->dmasize;
            CS_DBGOUT(CS_PARMS, 9, printk(
                "cs46xx: cs_update_ptr()+ ADC hwptr=%d diff=%d\n", 
                hwptr,diff) );
            dmabuf->hwptr = hwptr;
            dmabuf->total_bytes += diff;
            dmabuf->count += diff;
            if (dmabuf->count > dmabuf->dmasize)
                dmabuf->count = dmabuf->dmasize;

            if(dmabuf->mapped)
            {
                if (wake && dmabuf->count >= (signed)dmabuf->fragsize)
                    wake_up(&dmabuf->wait);
            } else 
            {
                if (wake && dmabuf->count > 0)
                    wake_up(&dmabuf->wait);
            }
        }
    }

/*
 * Now the DAC
 */
    state = card->states[1];
    if(state)
    {
        dmabuf = &state->dmabuf;
        /* error handling and process wake up for DAC */
        if (dmabuf->enable & DAC_RUNNING) {
            /* update hardware pointer */
            hwptr = cs_get_dma_addr(state);

            diff = (dmabuf->dmasize + hwptr - dmabuf->hwptr) % dmabuf->dmasize;
            CS_DBGOUT(CS_PARMS, 9, printk(
                "cs46xx: cs_update_ptr()+ DAC hwptr=%d diff=%d\n", 
                hwptr,diff) );
            dmabuf->hwptr = hwptr;
            dmabuf->total_bytes += diff;
            if (dmabuf->mapped) {
                dmabuf->count += diff;
                if (wake && dmabuf->count >= (signed)dmabuf->fragsize)
                    wake_up(&dmabuf->wait);
                /*
                 * other drivers use fragsize, but don't see any sense
                 * in that, since dmasize is the buffer asked for
                 * via mmap.
                 */
                if( dmabuf->count > dmabuf->dmasize)
                    dmabuf->count &= dmabuf->dmasize-1;
            } else {
                dmabuf->count -= diff;
                /*
                 * backfill with silence and clear out the last 
                 * "diff" number of bytes.
                 */
                if(hwptr >= diff)
                {
                    memset(dmabuf->rawbuf + hwptr - diff, 
                        (dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80, diff);
                }
                else
                {
                    memset(dmabuf->rawbuf, 
                        (dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80,
                        (unsigned)hwptr);
                    memset((void *)((unsigned)dmabuf->rawbuf + 
                            dmabuf->dmasize + hwptr - diff),
                        (dmabuf->fmt & CS_FMT_16BIT) ? 0 : 0x80, 
                        diff - hwptr); 
                }

                if (dmabuf->count < 0 || dmabuf->count > dmabuf->dmasize) {
                    CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
                      "cs46xx: ERROR DAC count<0 or count > dmasize (%d)\n",
                          dmabuf->count));
                    /* 
                    * buffer underrun or buffer overrun, reset the
                    * count of bytes written back to 0.
                    */
                    if(dmabuf->count < 0)
                        dmabuf->underrun=1;
                    dmabuf->count = 0;
                    dmabuf->error++;
                }
                if (wake && dmabuf->count < (signed)dmabuf->dmasize/2)
                    wake_up(&dmabuf->wait);
            }
        }
    }
}


/* hold spinlock for the following! */
static void cs_handle_midi(struct cs_card *card)
{
        unsigned char ch;
        int wake;
        unsigned temp1;

        wake = 0;
        while (!(cs461x_peekBA0(card,  BA0_MIDSR) & MIDSR_RBE)) {
                ch = cs461x_peekBA0(card, BA0_MIDRP);
                if (card->midi.icnt < CS_MIDIINBUF) {
                        card->midi.ibuf[card->midi.iwr] = ch;
                        card->midi.iwr = (card->midi.iwr + 1) % CS_MIDIINBUF;
                        card->midi.icnt++;
                }
                wake = 1;
        }
        if (wake)
                wake_up(&card->midi.iwait);
        wake = 0;
        while (!(cs461x_peekBA0(card,  BA0_MIDSR) & MIDSR_TBF) && card->midi.ocnt > 0) {
                temp1 = ( card->midi.obuf[card->midi.ord] ) & 0x000000ff;
                cs461x_pokeBA0(card, BA0_MIDWP,temp1);
                card->midi.ord = (card->midi.ord + 1) % CS_MIDIOUTBUF;
                card->midi.ocnt--;
                if (card->midi.ocnt < CS_MIDIOUTBUF-16)
                        wake = 1;
        }
        if (wake)
                wake_up(&card->midi.owait);
}

static void cs_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
    struct cs_card *card = (struct cs_card *)dev_id;
    /* Single channel card */
    struct cs_state *recstate = card->channel[0].state;
    struct cs_state *playstate = card->channel[1].state;
    u32 status;

    CS_DBGOUT(CS_INTERRUPT, 9, printk("cs46xx: cs_interrupt()+ \n"));

    spin_lock(&card->lock);

    status = cs461x_peekBA0(card, BA0_HISR);
    
    if ((status & 0x7fffffff) == 0)
    {
        cs461x_pokeBA0(card, BA0_HICR, HICR_CHGM|HICR_IEV);
        spin_unlock(&card->lock);
        return;
    }
    
    /*
     * check for playback or capture interrupt only
     */
    if( ((status & HISR_VC0) && playstate && playstate->dmabuf.ready) || 
        (((status & HISR_VC1) && recstate && recstate->dmabuf.ready)) )
    {
        CS_DBGOUT(CS_INTERRUPT, 8, printk(
            "cs46xx: cs_interrupt() interrupt bit(s) set (0x%x)\n",status));
        cs_update_ptr(card, CS_TRUE);
    }

        if( status & HISR_MIDI )
                cs_handle_midi(card);
    
     /* clear 'em */
    cs461x_pokeBA0(card, BA0_HICR, HICR_CHGM|HICR_IEV);
    spin_unlock(&card->lock);
    CS_DBGOUT(CS_INTERRUPT, 9, printk("cs46xx: cs_interrupt()- \n"));
}


/**********************************************************************/

static ssize_t cs_midi_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
        struct cs_card *card = (struct cs_card *)file->private_data;
        ssize_t ret;
        unsigned long flags;
        unsigned ptr;
        int cnt;

        if (ppos != &file->f_pos)
                return -ESPIPE;
        if (!access_ok(VERIFY_WRITE, buffer, count))
                return -EFAULT;
        ret = 0;
        while (count > 0) {
                spin_lock_irqsave(&card->lock, flags);
                ptr = card->midi.ird;
                cnt = CS_MIDIINBUF - ptr;
                if (card->midi.icnt < cnt)
                        cnt = card->midi.icnt;
                spin_unlock_irqrestore(&card->lock, flags);
                if (cnt > count)
                        cnt = count;
                if (cnt <= 0) {
                        if (file->f_flags & O_NONBLOCK)
                                return ret ? ret : -EAGAIN;
                        interruptible_sleep_on(&card->midi.iwait);
                        if (signal_pending(current))
                                return ret ? ret : -ERESTARTSYS;
                        continue;
                }
                if (copy_to_user(buffer, card->midi.ibuf + ptr, cnt))
                        return ret ? ret : -EFAULT;
                ptr = (ptr + cnt) % CS_MIDIINBUF;
                spin_lock_irqsave(&card->lock, flags);
                card->midi.ird = ptr;
                card->midi.icnt -= cnt;
                spin_unlock_irqrestore(&card->lock, flags);
                count -= cnt;
                buffer += cnt;
                ret += cnt;
        }
        return ret;
}


static ssize_t cs_midi_write(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
        struct cs_card *card = (struct cs_card *)file->private_data;
        ssize_t ret;
        unsigned long flags;
        unsigned ptr;
        int cnt;

        if (ppos != &file->f_pos)
                return -ESPIPE;
        if (!access_ok(VERIFY_READ, buffer, count))
                return -EFAULT;
        ret = 0;
        while (count > 0) {
                spin_lock_irqsave(&card->lock, flags);
                ptr = card->midi.owr;
                cnt = CS_MIDIOUTBUF - ptr;
                if (card->midi.ocnt + cnt > CS_MIDIOUTBUF)
                        cnt = CS_MIDIOUTBUF - card->midi.ocnt;
                if (cnt <= 0)
                        cs_handle_midi(card);
                spin_unlock_irqrestore(&card->lock, flags);
                if (cnt > count)
                        cnt = count;
                if (cnt <= 0) {
                        if (file->f_flags & O_NONBLOCK)
                                return ret ? ret : -EAGAIN;
                        interruptible_sleep_on(&card->midi.owait);
                        if (signal_pending(current))
                                return ret ? ret : -ERESTARTSYS;
                        continue;
                }
                if (copy_from_user(card->midi.obuf + ptr, buffer, cnt))
                        return ret ? ret : -EFAULT;
                ptr = (ptr + cnt) % CS_MIDIOUTBUF;
                spin_lock_irqsave(&card->lock, flags);
                card->midi.owr = ptr;
                card->midi.ocnt += cnt;
                spin_unlock_irqrestore(&card->lock, flags);
                count -= cnt;
                buffer += cnt;
                ret += cnt;
                spin_lock_irqsave(&card->lock, flags);
                cs_handle_midi(card);
                spin_unlock_irqrestore(&card->lock, flags);
        }
        return ret;
}


static unsigned int cs_midi_poll(struct file *file, struct poll_table_struct *wait)
{
        struct cs_card *card = (struct cs_card *)file->private_data;
        unsigned long flags;
        unsigned int mask = 0;

        if (file->f_flags & FMODE_WRITE)
                poll_wait(file, &card->midi.owait, wait);
        if (file->f_flags & FMODE_READ)
                poll_wait(file, &card->midi.iwait, wait);
        spin_lock_irqsave(&card->lock, flags);
        if (file->f_flags & FMODE_READ) {
                if (card->midi.icnt > 0)
                        mask |= POLLIN | POLLRDNORM;
        }
        if (file->f_flags & FMODE_WRITE) {
                if (card->midi.ocnt < CS_MIDIOUTBUF)
                        mask |= POLLOUT | POLLWRNORM;
        }
        spin_unlock_irqrestore(&card->lock, flags);
        return mask;
}


static int cs_midi_open(struct inode *inode, struct file *file)
{
        int minor = MINOR(inode->i_rdev);
        struct cs_card *card=NULL;
        unsigned long flags;
    struct list_head *entry;

    list_for_each(entry, &cs46xx_devs)
    {
        card = list_entry(entry, struct cs_card, list);
        if (card->dev_midi == minor)
            break;
    }

    if (entry == &cs46xx_devs)
        return -ENODEV;
    if (!card)
    {
        CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
            "cs46xx: cs46xx_midi_open(): Error - unable to find card struct\n"));
        return -ENODEV;
    }

        file->private_data = card;
        /* wait for device to become free */
        down(&card->midi.open_sem);
        while (card->midi.open_mode & file->f_mode) {
                if (file->f_flags & O_NONBLOCK) {
                        up(&card->midi.open_sem);
                        return -EBUSY;
                }
                up(&card->midi.open_sem);
                interruptible_sleep_on(&card->midi.open_wait);
                if (signal_pending(current))
                        return -ERESTARTSYS;
                down(&card->midi.open_sem);
        }
        spin_lock_irqsave(&card->midi.lock, flags);
        if (!(card->midi.open_mode & (FMODE_READ | FMODE_WRITE))) {
                card->midi.ird = card->midi.iwr = card->midi.icnt = 0;
                card->midi.ord = card->midi.owr = card->midi.ocnt = 0;
                card->midi.ird = card->midi.iwr = card->midi.icnt = 0;
                cs461x_pokeBA0(card, BA0_MIDCR, 0x0000000f);            /* Enable xmit, rcv. */
                cs461x_pokeBA0(card, BA0_HICR, HICR_IEV | HICR_CHGM);   /* Enable interrupts */
        }
        if (file->f_mode & FMODE_READ) {
                card->midi.ird = card->midi.iwr = card->midi.icnt = 0;
        }
        if (file->f_mode & FMODE_WRITE) {
                card->midi.ord = card->midi.owr = card->midi.ocnt = 0;
        }
        spin_unlock_irqrestore(&card->midi.lock, flags);
        card->midi.open_mode |= (file->f_mode & (FMODE_READ | FMODE_WRITE));
        up(&card->midi.open_sem);
        MOD_INC_USE_COUNT; /* for 2.2 */
        return 0;
}


static int cs_midi_release(struct inode *inode, struct file *file)
{
        struct cs_card *card = (struct cs_card *)file->private_data;
        DECLARE_WAITQUEUE(wait, current);
        unsigned long flags;
        unsigned count, tmo;

        if (file->f_mode & FMODE_WRITE) {
                current->state = TASK_INTERRUPTIBLE;
                add_wait_queue(&card->midi.owait, &wait);
                for (;;) {
                        spin_lock_irqsave(&card->midi.lock, flags);
                        count = card->midi.ocnt;
                        spin_unlock_irqrestore(&card->midi.lock, flags);
                        if (count <= 0)
                                break;
                        if (signal_pending(current))
                                break;
                        if (file->f_flags & O_NONBLOCK)
                            break;
                        tmo = (count * HZ) / 3100;
                        if (!schedule_timeout(tmo ? : 1) && tmo)
                                printk(KERN_DEBUG "cs46xx: midi timed out??\n");
                }
                remove_wait_queue(&card->midi.owait, &wait);
                current->state = TASK_RUNNING;
        }
        down(&card->midi.open_sem);
        card->midi.open_mode &= (~(file->f_mode & (FMODE_READ | FMODE_WRITE)));
        up(&card->midi.open_sem);
        wake_up(&card->midi.open_wait);
        MOD_DEC_USE_COUNT; /* for 2.2 */
        return 0;
}

/*
 *   Midi file operations struct.
 */
static /*const*/ struct file_operations cs_midi_fops = {
    CS_OWNER    CS_THIS_MODULE
    llseek:        no_llseek,
    read:        cs_midi_read,
    write:        cs_midi_write,
    poll:        cs_midi_poll,
    open:        cs_midi_open,
    release:    cs_midi_release,
};

/*
 *
 * CopySamples copies 16-bit stereo signed samples from the source to the
 * destination, possibly converting down to unsigned 8-bit and/or mono.
 * count specifies the number of output bytes to write.
 *
 *  Arguments:
 *
 *  dst             - Pointer to a destination buffer.
 *  src             - Pointer to a source buffer
 *  count           - The number of bytes to copy into the destination buffer.
 *  fmt             - CS_FMT_16BIT and/or CS_FMT_STEREO bits
 *  dmabuf          - pointer to the dma buffer structure
 *
 * NOTES: only call this routine if the output desired is not 16 Signed Stereo
 *     
 *
 */
static void CopySamples(char *dst, char *src, int count, unsigned fmt, 
        struct dmabuf *dmabuf)
{

    s32 s32AudioSample;
    s16 *psSrc=(s16 *)src;
    s16 *psDst=(s16 *)dst;
    u8 *pucDst=(u8 *)dst;

    CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO "cs46xx: CopySamples()+ ") );
    CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO
    " dst=0x%x src=0x%x count=%d fmt=0x%x\n",
    (unsigned)dst,(unsigned)src,(unsigned)count,(unsigned)fmt) );

    /*
     * See if the data should be output as 8-bit unsigned stereo.
     */
    if((fmt & CS_FMT_STEREO) && !(fmt & CS_FMT_16BIT))
    {
        /*
         * Convert each 16-bit signed stereo sample to 8-bit unsigned 
     * stereo using rounding.
         */
        psSrc = (s16 *)src;
    count = count/2;
        while(count--)
        {
            *(pucDst++) = (u8)(((s16)(*psSrc++) + (s16)0x8000) >> 8);
        }
    }
    /*
     * See if the data should be output at 8-bit unsigned mono.
     */
    else if(!(fmt & CS_FMT_STEREO) && !(fmt & CS_FMT_16BIT))
    {
        /*
         * Convert each 16-bit signed stereo sample to 8-bit unsigned 
     * mono using averaging and rounding.
         */
        psSrc = (s16 *)src;
    count = count/2;
        while(count--)
        {
        s32AudioSample = ((*psSrc)+(*(psSrc + 1)))/2 + (s32)0x80;
        if(s32AudioSample > 0x7fff)
            s32AudioSample = 0x7fff;
            *(pucDst++) = (u8)(((s16)s32AudioSample + (s16)0x8000) >> 8);
        psSrc += 2;
        }
    }
    /*
     * See if the data should be output at 16-bit signed mono.
     */
    else if(!(fmt & CS_FMT_STEREO) && (fmt & CS_FMT_16BIT))
    {
        /*
         * Convert each 16-bit signed stereo sample to 16-bit signed 
     * mono using averaging.
         */
        psSrc = (s16 *)src;
    count = count/2;
        while(count--)
        {
            *(psDst++) = (s16)((*psSrc)+(*(psSrc + 1)))/2;
        psSrc += 2;
        }
    }
}

/*
 * cs_copy_to_user()
 * replacement for the standard copy_to_user, to allow for a conversion from
 * 16 bit to 8 bit and from stereo to mono, if the record conversion is active.  
 * The current CS46xx/CS4280 static image only records in 16bit unsigned Stereo, 
 * so we convert from any of the other format combinations.
 */
static unsigned cs_copy_to_user(
    struct cs_state *s, 
    void *dest, 
    void *hwsrc, 
    unsigned cnt, 
    unsigned *copied)
{
    struct dmabuf *dmabuf = &s->dmabuf;
    void *src = hwsrc;  /* default to the standard destination buffer addr */

    CS_DBGOUT(CS_FUNCTION, 6, printk(KERN_INFO 
        "cs_copy_to_user()+ fmt=0x%x cnt=%d dest=0x%.8x\n",
        dmabuf->fmt,(unsigned)cnt,(unsigned)dest) );

    if(cnt > dmabuf->dmasize)
    {
        cnt = dmabuf->dmasize;
    }
    if(!cnt)
    {
        *copied = 0;
        return 0;
    }
    if(dmabuf->divisor != 1)
    {
        if(!dmabuf->tmpbuff)
        {
            *copied = cnt/dmabuf->divisor;
            return 0;
        }

        CopySamples((char *)dmabuf->tmpbuff, (char *)hwsrc, cnt, 
            dmabuf->fmt, dmabuf);
        src = dmabuf->tmpbuff;
        cnt = cnt/dmabuf->divisor;
    }
        if (copy_to_user(dest, src, cnt))
    {
        CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_ERR 
            "cs46xx: cs_copy_to_user()- fault dest=0x%x src=0x%x cnt=%d\n",
                (unsigned)dest,(unsigned)src,cnt) );
        *copied = 0;
        return -EFAULT;
    }
    *copied = cnt;
    CS_DBGOUT(CS_FUNCTION, 2, printk(KERN_INFO 
        "cs46xx: cs_copy_to_user()- copied bytes is %d \n",cnt) );
    return 0;
}

/* in this loop, dmabuf.count signifies the amount of data that is waiting to be copied to
   the user's buffer.  it is filled by the dma machine and drained by this loop. */
static ssize_t cs_read(struct file *file, char *buffer, size_t count, loff_t *ppos)
{
    struct cs_card *card = (struct cs_card *) file->private_data;
    struct cs_state *state;
    DECLARE_WAITQUEUE(wait, current);
    struct dmabuf *dmabuf;
    ssize_t ret = 0;
    unsigned long flags;
    unsigned swptr;
    int cnt;
    unsigned copied=0;

    CS_DBGOUT(CS_WAVE_READ | CS_FUNCTION, 4, 
        printk("cs46xx: cs_read()+ %d\n",count) );
    state = (struct cs_state *)card->states[0];
    if(!state)
        return -ENODEV;
    dmabuf = &state->dmabuf;

    if (ppos != &file->f_pos)
        return -ESPIPE;
    if (dmabuf->mapped)
        return -ENXIO;
    if (!access_ok(VERIFY_WRITE, buffer, count))
        return -EFAULT;
    
    down(&state->sem);
    if (!dmabuf->ready && (ret = __prog_dmabuf(state)))
        goto out2;

    add_wait_queue(&state->dmabuf.wait, &wait);
    while (count > 0) {
        while(!(card->pm.flags & CS46XX_PM_IDLE))
        {
            schedule();
            if (signal_pending(current)) {
                if(!ret) ret = -ERESTARTSYS;
                goto out;
            }
        }
        spin_lock_irqsave(&state->card->lock, flags);
        swptr = dmabuf->swptr;
        cnt = dmabuf->dmasize - swptr;
        if (dmabuf->count < cnt)
            cnt = dmabuf->count;
        if (cnt <= 0)
            __set_current_state(TASK_INTERRUPTIBLE);
        spin_unlock_irqrestore(&state->card->lock, flags);

        if (cnt > (count * dmabuf->divisor))
            cnt = count * dmabuf->divisor;
        if (cnt <= 0) {
            /* buffer is empty, start the dma machine and wait for data to be
               recorded */
            start_adc(state);
            if (file->f_flags & O_NONBLOCK) {
                if (!ret) ret = -EAGAIN;
                goto out;
             }
            up(&state->sem);
            schedule();
            if (signal_pending(current)) {
                if(!ret) ret = -ERESTARTSYS;
                goto out;
            }
            down(&state->sem);
            if (dmabuf->mapped) 
            {
                if(!ret)
                    ret = -ENXIO;
                goto out;
            }
             continue;
        }

        CS_DBGOUT(CS_WAVE_READ, 2, printk(KERN_INFO 
            "_read() copy_to cnt=%d count=%d ", cnt,count) );
        CS_DBGOUT(CS_WAVE_READ, 8, printk(KERN_INFO 
            " .dmasize=%d .count=%d buffer=0x%.8x ret=%d\n",
            dmabuf->dmasize,dmabuf->count,(unsigned)buffer,ret) );

                if (cs_copy_to_user(state, buffer, 
            (void *)((unsigned)dmabuf->rawbuf + swptr), cnt, &copied))
        {
            if (!ret) ret = -EFAULT;
            goto out;
        }
                swptr = (swptr + cnt) % dmabuf->dmasize;
                spin_lock_irqsave(&card->lock, flags);
                dmabuf->swptr = swptr;
                dmabuf->count -= cnt;
                spin_unlock_irqrestore(&card->lock, flags);
                count -= copied;
                buffer += copied;
                ret += copied;
                start_adc(state);
    }
out:
    remove_wait_queue(&state->dmabuf.wait, &wait);
out2:
    up(&state->sem);
    set_current_state(TASK_RUNNING);
    CS_DBGOUT(CS_WAVE_READ | CS_FUNCTION, 4, 
        printk("cs46xx: cs_read()- %d\n",ret) );
    return ret;
}

/* in this loop, dmabuf.count signifies the amount of data that is waiting to be dma to
   the soundcard.  it is drained by the dma machine and filled by this loop. */
static ssize_t cs_write(struct file *file, const char *buffer, size_t count, loff_t *ppos)
{
    struct cs_card *card = (struct cs_card *) file->private_data;
    struct cs_state *state;
    DECLARE_WAITQUEUE(wait, current);
    struct dmabuf *dmabuf;
    ssize_t ret;
    unsigned long flags;
    unsigned swptr;
    int cnt;

    CS_DBGOUT(CS_WAVE_WRITE | CS_FUNCTION, 4,
        printk("cs46xx: cs_write called, count = %d\n", count) );
    state = (struct cs_state *)card->states[1];
    if(!state)
        return -ENODEV;
    if (!access_ok(VERIFY_READ, buffer, count))
        return EFAULT;
    dmabuf = &state->dmabuf;

    if (ppos != &file->f_pos)
        return -ESPIPE;

    down(&state->sem);
    if (dmabuf->mapped)
    {
        ret = -ENXIO;
        goto out;
    }

    if (!dmabuf->ready && (ret = __prog_dmabuf(state)))
        goto out;
    add_wait_queue(&state->dmabuf.wait, &wait);
    ret = 0;
/*
* Start the loop to read from the user's buffer and write to the dma buffer.
* check for PM events and underrun/overrun in the loop.
*/
    while (count > 0) {
        while(!(card->pm.flags & CS46XX_PM_IDLE))
        {
            schedule();
            if (signal_pending(current)) {
                if(!ret) ret = -ERESTARTSYS;
                goto out;
            }
        }
        spin_lock_irqsave(&state->card->lock, flags);
        if (dmabuf->count < 0) {
            /* buffer underrun, we are recovering from sleep_on_timeout,
               resync hwptr and swptr */
            dmabuf->count = 0;
            dmabuf->swptr = dmabuf->hwptr;
        }
        if (dmabuf->underrun)
        {
            dmabuf->underrun = 0;
            dmabuf->hwptr = cs_get_dma_addr(state);
            dmabuf->swptr = dmabuf->hwptr;
        }

        swptr = dmabuf->swptr;
        cnt = dmabuf->dmasize - swptr;
        if (dmabuf->count + cnt > dmabuf->dmasize)
            cnt = dmabuf->dmasize - dmabuf->count;
        if (cnt <= 0)
            __set_current_state(TASK_INTERRUPTIBLE);
        spin_unlock_irqrestore(&state->card->lock, flags);

        if (cnt > count)
            cnt = count;
        if (cnt <= 0) {
            /* buffer is full, start the dma machine and wait for data to be
               played */
            start_dac(state);
            if (file->f_flags & O_NONBLOCK) {
                if (!ret) ret = -EAGAIN;
                goto out;
             }
            up(&state->sem);
            schedule();
             if (signal_pending(current)) {
                if(!ret) ret = -ERESTARTSYS;
                goto out;
             }
            down(&state->sem);
            if (dmabuf->mapped)
            {
                if(!ret)
                    ret = -ENXIO;
                goto out;
            }
             continue;
         }
        if (copy_from_user(dmabuf->rawbuf + swptr, buffer, cnt)) {
            if (!ret) ret = -EFAULT;
            goto out;
        }
        spin_lock_irqsave(&state->card->lock, flags);
        swptr = (swptr + cnt) % dmabuf->dmasize;
        dmabuf->swptr = swptr;
        dmabuf->count += cnt;
        if(dmabuf->count > dmabuf->dmasize)
        {
            CS_DBGOUT(CS_WAVE_WRITE | CS_ERROR, 2, printk(
                "cs46xx: cs_write() d->count > dmasize - resetting\n"));
            dmabuf->count = dmabuf->dmasize;
        }
        dmabuf->endcleared = 0;
        spin_unlock_irqrestore(&state->card->lock, flags);

        count -= cnt;
        buffer += cnt;
        ret += cnt;
        start_dac(state);
    }
out:
    up(&state->sem);
    remove_wait_queue(&state->dmabuf.wait, &wait);
    set_current_state(TASK_RUNNING);

    CS_DBGOUT(CS_WAVE_WRITE | CS_FUNCTION, 2, 
        printk("cs46xx: cs_write()- ret=0x%x\n", ret) );
    return ret;
}

static unsigned int cs_poll(struct file *file, struct poll_table_struct *wait)
{
    struct cs_card *card = (struct cs_card *)file->private_data;
    struct dmabuf *dmabuf;
    struct cs_state *state;

    unsigned long flags;
    unsigned int mask = 0;

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_poll()+ \n"));
    if (!(file->f_mode & (FMODE_WRITE | FMODE_READ)))
    {
        return -EINVAL;
    }
    if (file->f_mode & FMODE_WRITE)
    {
        state = card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            poll_wait(file, &dmabuf->wait, wait);
        }
    }
    if (file->f_mode & FMODE_READ)
    {
        state = card->states[0];
        if(state)
        {
            dmabuf = &state->dmabuf;
            poll_wait(file, &dmabuf->wait, wait);
        }
    }

    spin_lock_irqsave(&card->lock, flags);
    cs_update_ptr(card, CS_FALSE);
    if (file->f_mode & FMODE_READ) {
        state = card->states[0];
        if(state)
        {
            dmabuf = &state->dmabuf;
            if (dmabuf->count >= (signed)dmabuf->fragsize)
                mask |= POLLIN | POLLRDNORM;
        }
    }
    if (file->f_mode & FMODE_WRITE) {
        state = card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            if (dmabuf->mapped) {
                if (dmabuf->count >= (signed)dmabuf->fragsize)
                    mask |= POLLOUT | POLLWRNORM;
            } else {
                if ((signed)dmabuf->dmasize >= dmabuf->count 
                    + (signed)dmabuf->fragsize)
                    mask |= POLLOUT | POLLWRNORM;
            }
        }
    }
    spin_unlock_irqrestore(&card->lock, flags);

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_poll()- (0x%x) \n",
        mask));
    return mask;
}

/*
 *    We let users mmap the ring buffer. Its not the real DMA buffer but
 *    that side of the code is hidden in the IRQ handling. We do a software
 *    emulation of DMA from a 64K or so buffer into a 2K FIFO. 
 *    (the hardware probably deserves a moan here but Crystal send me nice
 *    toys ;)).
 */
 
static int cs_mmap(struct file *file, struct vm_area_struct *vma)
{
    struct cs_card *card = (struct cs_card *)file->private_data;
    struct cs_state *state;
    struct dmabuf *dmabuf;
    int ret = 0;
    unsigned long size;

    CS_DBGOUT(CS_FUNCTION | CS_PARMS, 2, printk("cs46xx: cs_mmap()+ file=0x%x %s %s\n", 
        (unsigned)file, vma->vm_flags & VM_WRITE ? "VM_WRITE" : "",
        vma->vm_flags & VM_READ ? "VM_READ" : "") );

    if (vma->vm_flags & VM_WRITE) {
        state = card->states[1];
        if(state)
        {
            CS_DBGOUT(CS_OPEN, 2, printk(
              "cs46xx: cs_mmap() VM_WRITE - state TRUE prog_dmabuf DAC\n") );
            if ((ret = prog_dmabuf(state)) != 0)
                return ret;
        }
    } else if (vma->vm_flags & VM_READ) {
        state = card->states[0];
        if(state)
        {
            CS_DBGOUT(CS_OPEN, 2, printk(
              "cs46xx: cs_mmap() VM_READ - state TRUE prog_dmabuf ADC\n") );
            if ((ret = prog_dmabuf(state)) != 0)
                return ret;
        }
    } else {
        CS_DBGOUT(CS_ERROR, 2, printk(
          "cs46xx: cs_mmap() return -EINVAL\n") );
        return -EINVAL;
    }

/*
 * For now ONLY support playback, but seems like the only way to use
 * mmap() is to open an FD with RDWR, just read or just write access
 * does not function, get an error back from the kernel.
 * Also, QuakeIII opens with RDWR!  So, there must be something
 * to needing read/write access mapping.  So, allow read/write but 
 * use the DAC only.
 */
    state = card->states[1];  
    if(!(unsigned)state)
    {
        ret = -EINVAL;
        goto out;
    }

    down(&state->sem);    
    dmabuf = &state->dmabuf;
    if (cs4x_pgoff(vma) != 0)
    {
        ret = -EINVAL;
        goto out;
    }
    size = vma->vm_end - vma->vm_start;

    CS_DBGOUT(CS_PARMS, 2, printk("cs46xx: cs_mmap(): size=%d\n",(unsigned)size) );

    if (size > (PAGE_SIZE << dmabuf->buforder))
    {
        ret = -EINVAL;
        goto out;
    }
    if (remap_page_range(vma->vm_start, virt_to_phys(dmabuf->rawbuf),
                 size, vma->vm_page_prot))
    {
        ret = -EAGAIN;
        goto out;
    }
    dmabuf->mapped = 1;

    CS_DBGOUT(CS_FUNCTION, 2, printk("cs46xx: cs_mmap()-\n") );
out:
    up(&state->sem);
    return ret;    
}

static int cs_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
    struct cs_card *card = (struct cs_card *)file->private_data;
    struct cs_state *state;
    struct dmabuf *dmabuf=0;
    unsigned long flags;
    audio_buf_info abinfo;
    count_info cinfo;
    int val, valsave, mapped, ret;

    state = (struct cs_state *)card->states[0];
    if(state)
    {
        dmabuf = &state->dmabuf;
        mapped = (file->f_mode & FMODE_READ) && dmabuf->mapped;
    }
    state = (struct cs_state *)card->states[1];
    if(state)
    {
        dmabuf = &state->dmabuf;
        mapped |= (file->f_mode & FMODE_WRITE) && dmabuf->mapped;
    }
        
#if CSDEBUG
    printioctl(cmd);
#endif

    switch (cmd) 
    {
    case OSS_GETVERSION:
        return put_user(SOUND_VERSION, (int *)arg);

    case SNDCTL_DSP_RESET:
        /* FIXME: spin_lock ? */
        if (file->f_mode & FMODE_WRITE) {
            state = (struct cs_state *)card->states[1];
            if(state)
            {
                dmabuf = &state->dmabuf;
                stop_dac(state);
                synchronize_irq();
                dmabuf->ready = 0;
                resync_dma_ptrs(state);
                dmabuf->swptr = dmabuf->hwptr = 0;
                dmabuf->count = dmabuf->total_bytes = 0;
                dmabuf->blocks = 0;
                dmabuf->SGok = 0;
            }
        }
        if (file->f_mode & FMODE_READ) {
            state = (struct cs_state *)card->states[0];
            if(state)
            {
                dmabuf = &state->dmabuf;
                stop_adc(state);
                synchronize_irq();
                resync_dma_ptrs(state);
                dmabuf->ready = 0;
                dmabuf->swptr = dmabuf->hwptr = 0;
                dmabuf->count = dmabuf->total_bytes = 0;
                dmabuf->blocks = 0;
                dmabuf->SGok = 0;
            }
        }
        CS_DBGOUT(CS_IOCTL, 2, printk("cs46xx: DSP_RESET()-\n") );
        return 0;

    case SNDCTL_DSP_SYNC:
        if (file->f_mode & FMODE_WRITE)
            return drain_dac(state, file->f_flags & O_NONBLOCK);
        return 0;

    case SNDCTL_DSP_SPEED: /* set sample rate */
        if (get_user(val, (int *)arg))
            return -EFAULT;
        if (val >= 0) {
            if (file->f_mode & FMODE_READ) {
                state = (struct cs_state *)card->states[0];
                if(state)
                {
                    dmabuf = &state->dmabuf;
                    stop_adc(state);
                    dmabuf->ready = 0;
                    dmabuf->SGok = 0;
                    cs_set_adc_rate(state, val);
                    cs_set_divisor(dmabuf);
                }
            }
            if (file->f_mode & FMODE_WRITE) {
                state = (struct cs_state *)card->states[1];
                if(state)
                {
                    dmabuf = &state->dmabuf;
                    stop_dac(state);
                    dmabuf->ready = 0;
                    dmabuf->SGok = 0;
                    cs_set_dac_rate(state, val);
                    cs_set_divisor(dmabuf);
                }
            }
            CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
                "cs46xx: cs_ioctl() DSP_SPEED %s %s %d\n",
                file->f_mode & FMODE_WRITE ? "DAC" : "",
                file->f_mode & FMODE_READ ? "ADC" : "",
                dmabuf->rate ) );
            return put_user(dmabuf->rate, (int *)arg);
        }
        return put_user(0, (int *)arg);

    case SNDCTL_DSP_STEREO: /* set stereo or mono channel */
        if (get_user(val, (int *)arg))
            return -EFAULT;
        if (file->f_mode & FMODE_WRITE) {
            state = (struct cs_state *)card->states[1];
            if(state)
            {
                dmabuf = &state->dmabuf;
                stop_dac(state);
                dmabuf->ready = 0;
                dmabuf->SGok = 0;
                if(val)
                    dmabuf->fmt |= CS_FMT_STEREO;
                else
                    dmabuf->fmt &= ~CS_FMT_STEREO;
                cs_set_divisor(dmabuf);
                CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
                    "cs46xx: DSP_STEREO() DAC %s\n",
                    (dmabuf->fmt & CS_FMT_STEREO) ?
                    "STEREO":"MONO") );
            }
        }
        if (file->f_mode & FMODE_READ) {
            state = (struct cs_state *)card->states[0];
            if(state)
            {
                dmabuf = &state->dmabuf;
                stop_adc(state);
                dmabuf->ready = 0;
                dmabuf->SGok = 0;
                if(val)
                    dmabuf->fmt |= CS_FMT_STEREO;
                else
                    dmabuf->fmt &= ~CS_FMT_STEREO;
                cs_set_divisor(dmabuf);
                CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
                    "cs46xx: DSP_STEREO() ADC %s\n",
                    (dmabuf->fmt & CS_FMT_STEREO) ?
                    "STEREO":"MONO") );
            }
        }
        return 0;

    case SNDCTL_DSP_GETBLKSIZE:
        if (file->f_mode & FMODE_WRITE) {
            state = (struct cs_state *)card->states[1];
            if(state)
            {
                dmabuf = &state->dmabuf;
                if ((val = prog_dmabuf(state)))
                    return val;
                return put_user(dmabuf->fragsize, (int *)arg);
            }
        }
        if (file->f_mode & FMODE_READ) {
            state = (struct cs_state *)card->states[0];
            if(state)
            {
                dmabuf = &state->dmabuf;
                if ((val = prog_dmabuf(state)))
                    return val;
                return put_user(dmabuf->fragsize/dmabuf->divisor, 
                        (int *)arg);
            }
        }
        return put_user(0, (int *)arg);

    case SNDCTL_DSP_GETFMTS: /* Returns a mask of supported sample format*/
        return put_user(AFMT_S16_LE | AFMT_U8, (int *)arg);

    case SNDCTL_DSP_SETFMT: /* Select sample format */
        if (get_user(val, (int *)arg))
            return -EFAULT;
        CS_DBGOUT(CS_IOCTL | CS_PARMS, 4, printk(
            "cs46xx: cs_ioctl() DSP_SETFMT %s %s %s %s\n",
            file->f_mode & FMODE_WRITE ? "DAC" : "",
            file->f_mode & FMODE_READ ? "ADC" : "",
            val == AFMT_S16_LE ? "16Bit Signed" : "",
            val == AFMT_U8 ? "8Bit Unsigned" : "") );
        valsave = val;
        if (val != AFMT_QUERY) {
            if(val==AFMT_S16_LE || val==AFMT_U8)
            {
                if (file->f_mode & FMODE_WRITE) {
                    state = (struct cs_state *)card->states[1];
                    if(state)
                    {
                        dmabuf = &state->dmabuf;
                        stop_dac(state);
                        dmabuf->ready = 0;
                        dmabuf->SGok = 0;
                        if(val==AFMT_S16_LE)
                            dmabuf->fmt |= CS_FMT_16BIT;
                        else
                            dmabuf->fmt &= ~CS_FMT_16BIT;
                        cs_set_divisor(dmabuf);
                        if((ret = prog_dmabuf(state)))
                            return ret;
                    }
                }
                if (file->f_mode & FMODE_READ) {
                    val = valsave;
                    state = (struct cs_state *)card->states[0];
                    if(state)
                    {
                        dmabuf = &state->dmabuf;
                        stop_adc(state);
                        dmabuf->ready = 0;
                        dmabuf->SGok = 0;
                        if(val==AFMT_S16_LE)
                            dmabuf->fmt |= CS_FMT_16BIT;
                        else
                            dmabuf->fmt &= ~CS_FMT_16BIT;
                        cs_set_divisor(dmabuf);
                        if((ret = prog_dmabuf(state)))
                            return ret;
                    }
                }
            }
            else
            {
                CS_DBGOUT(CS_IOCTL | CS_ERROR, 2, printk(
                    "cs46xx: DSP_SETFMT() Unsupported format (0x%x)\n",
                    valsave) );
            }
        }
        else
        {
            if(file->f_mode & FMODE_WRITE)
            {
                state = (struct cs_state *)card->states[1];
                if(state)
                    dmabuf = &state->dmabuf;
            }
            else if(file->f_mode & FMODE_READ)
            {
                state = (struct cs_state *)card->states[0];
                if(state)
                    dmabuf = &state->dmabuf;
            }
        }
        if(dmabuf)
        {
            if(dmabuf->fmt & CS_FMT_16BIT)
                return put_user(AFMT_S16_LE, (int *)arg);
            else
                return put_user(AFMT_U8, (int *)arg);
        }
        return put_user(0, (int *)arg);

    case SNDCTL_DSP_CHANNELS:
        if (get_user(val, (int *)arg))
            return -EFAULT;
        if (val != 0) {
            if (file->f_mode & FMODE_WRITE) {
                state = (struct cs_state *)card->states[1];
                if(state)
                {
                    dmabuf = &state->dmabuf;
                    stop_dac(state);
                    dmabuf->ready = 0;
                    dmabuf->SGok = 0;
                    if(val>1)
                        dmabuf->fmt |= CS_FMT_STEREO;
                    else
                        dmabuf->fmt &= ~CS_FMT_STEREO;
                    cs_set_divisor(dmabuf);
                    if (prog_dmabuf(state))
                        return 0;
                }
            }
            if (file->f_mode & FMODE_READ) {
                state = (struct cs_state *)card->states[0];
                if(state)
                {
                    dmabuf = &state->dmabuf;
                    stop_adc(state);
                    dmabuf->ready = 0;
                    dmabuf->SGok = 0;
                    if(val>1)
                        dmabuf->fmt |= CS_FMT_STEREO;
                    else
                        dmabuf->fmt &= ~CS_FMT_STEREO;
                    cs_set_divisor(dmabuf);
                    if (prog_dmabuf(state))
                        return 0;
                }
            }
        }
        return put_user((dmabuf->fmt & CS_FMT_STEREO) ? 2 : 1,
                (int *)arg);

    case SNDCTL_DSP_POST:
        /*
         * There will be a longer than normal pause in the data.
         * so... do nothing, because there is nothing that we can do.
         */
        return 0;

    case SNDCTL_DSP_SUBDIVIDE:
        if (file->f_mode & FMODE_WRITE) {
            state = (struct cs_state *)card->states[1];
            if(state)
            {
                dmabuf = &state->dmabuf;
                if (dmabuf->subdivision)
                    return -EINVAL;
                if (get_user(val, (int *)arg))
                    return -EFAULT;
                if (val != 1 && val != 2)
                    return -EINVAL;
                dmabuf->subdivision = val;
            }
        }
        if (file->f_mode & FMODE_READ) {
            state = (struct cs_state *)card->states[0];
            if(state)
            {
                dmabuf = &state->dmabuf;
                if (dmabuf->subdivision)
                    return -EINVAL;
                if (get_user(val, (int *)arg))
                    return -EFAULT;
                if (val != 1 && val != 2)
                    return -EINVAL;
                dmabuf->subdivision = val;
            }
        }
        return 0;

    case SNDCTL_DSP_SETFRAGMENT:
        if (get_user(val, (int *)arg))
            return -EFAULT;

        if (file->f_mode & FMODE_WRITE) {
            state = (struct cs_state *)card->states[1];
            if(state)
            {
                dmabuf = &state->dmabuf;
                dmabuf->ossfragshift = val & 0xffff;
                dmabuf->ossmaxfrags = (val >> 16) & 0xffff;
            }
        }
        if (file->f_mode & FMODE_READ) {
            state = (struct cs_state *)card->states[0];
            if(state)
            {
                dmabuf = &state->dmabuf;
                dmabuf->ossfragshift = val & 0xffff;
                dmabuf->ossmaxfrags = (val >> 16) & 0xffff;
            }
        }
        return 0;

    case SNDCTL_DSP_GETOSPACE:
        if (!(file->f_mode & FMODE_WRITE))
            return -EINVAL;
        state = (struct cs_state *)card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            spin_lock_irqsave(&state->card->lock, flags);
            cs_update_ptr(card, CS_TRUE);
            abinfo.fragsize = dmabuf->fragsize;
            abinfo.fragstotal = dmabuf->numfrag;
        /*
         * for mmap we always have total space available
         */
            if (dmabuf->mapped)
                abinfo.bytes = dmabuf->dmasize;
            else
                abinfo.bytes = dmabuf->dmasize - dmabuf->count;

            abinfo.fragments = abinfo.bytes >> dmabuf->fragshift;
            spin_unlock_irqrestore(&state->card->lock, flags);
            return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
        }
        return -ENODEV;

    case SNDCTL_DSP_GETISPACE:
        if (!(file->f_mode & FMODE_READ))
            return -EINVAL;
        state = (struct cs_state *)card->states[0];
        if(state)
        {
            dmabuf = &state->dmabuf;
            spin_lock_irqsave(&state->card->lock, flags);
            cs_update_ptr(card, CS_TRUE);
            abinfo.fragsize = dmabuf->fragsize/dmabuf->divisor;
            abinfo.bytes = dmabuf->count/dmabuf->divisor;
            abinfo.fragstotal = dmabuf->numfrag;
            abinfo.fragments = abinfo.bytes >> dmabuf->fragshift;
            spin_unlock_irqrestore(&state->card->lock, flags);
            return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0;
        }
        return -ENODEV;

    case SNDCTL_DSP_NONBLOCK:
        file->f_flags |= O_NONBLOCK;
        return 0;

    case SNDCTL_DSP_GETCAPS:
        return put_user(DSP_CAP_REALTIME|DSP_CAP_TRIGGER|DSP_CAP_MMAP,
                (int *)arg);

    case SNDCTL_DSP_GETTRIGGER:
        val = 0;
        CS_DBGOUT(CS_IOCTL, 2, printk("cs46xx: DSP_GETTRIGGER()+\n") );
        if (file->f_mode & FMODE_WRITE)
        {
            state = (struct cs_state *)card->states[1];
            if(state)
            {
                dmabuf = &state->dmabuf;
                if(dmabuf->enable & DAC_RUNNING)
                    val |= PCM_ENABLE_INPUT;
            }
        }
        if (file->f_mode & FMODE_READ)
        {
            if(state)
            {
                state = (struct cs_state *)card->states[0];
                dmabuf = &state->dmabuf;
                if(dmabuf->enable & ADC_RUNNING)
                    val |= PCM_ENABLE_OUTPUT;
            }
        }
        CS_DBGOUT(CS_IOCTL, 2, printk("cs46xx: DSP_GETTRIGGER()- val=0x%x\n",val) );
        return put_user(val, (int *)arg);

    case SNDCTL_DSP_SETTRIGGER:
        if (get_user(val, (int *)arg))
            return -EFAULT;
        if (file->f_mode & FMODE_READ) {
            state = (struct cs_state *)card->states[0];
            if(state)
            {
                dmabuf = &state->dmabuf;
                if (val & PCM_ENABLE_INPUT) {
                    if (!dmabuf->ready && (ret = prog_dmabuf(state)))
                        return ret;
                    start_adc(state);
                } else
                    stop_adc(state);
            }
        }
        if (file->f_mode & FMODE_WRITE) {
            state = (struct cs_state *)card->states[1];
            if(state)
            {
                dmabuf = &state->dmabuf;
                if (val & PCM_ENABLE_OUTPUT) {
                    if (!dmabuf->ready && (ret = prog_dmabuf(state)))
                        return ret;
                    start_dac(state);
                } else
                    stop_dac(state);
            }
        }
        return 0;

    case SNDCTL_DSP_GETIPTR:
        if (!(file->f_mode & FMODE_READ))
            return -EINVAL;
        state = (struct cs_state *)card->states[0];
        if(state)
        {
            dmabuf = &state->dmabuf;
            spin_lock_irqsave(&state->card->lock, flags);
            cs_update_ptr(card, CS_TRUE);
            cinfo.bytes = dmabuf->total_bytes/dmabuf->divisor;
            cinfo.blocks = dmabuf->count/dmabuf->divisor >> dmabuf->fragshift;
            cinfo.ptr = dmabuf->hwptr/dmabuf->divisor;
            spin_unlock_irqrestore(&state->card->lock, flags);
            return copy_to_user((void *)arg, &cinfo, sizeof(cinfo));
        }
        return -ENODEV;

    case SNDCTL_DSP_GETOPTR:
        if (!(file->f_mode & FMODE_WRITE))
            return -EINVAL;
        state = (struct cs_state *)card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            spin_lock_irqsave(&state->card->lock, flags);
            cs_update_ptr(card, CS_TRUE);
            cinfo.bytes = dmabuf->total_bytes;
            if (dmabuf->mapped)
            {
                cinfo.blocks = (cinfo.bytes >> dmabuf->fragshift) 
                            - dmabuf->blocks;
                CS_DBGOUT(CS_PARMS, 8, 
                    printk("total_bytes=%d blocks=%d dmabuf->blocks=%d\n", 
                    cinfo.bytes,cinfo.blocks,dmabuf->blocks) );
                dmabuf->blocks = cinfo.bytes >> dmabuf->fragshift;
            }
            else
            {
                cinfo.blocks = dmabuf->count >> dmabuf->fragshift;
            }
            cinfo.ptr = dmabuf->hwptr;

            CS_DBGOUT(CS_PARMS, 4, printk(
                "cs46xx: GETOPTR bytes=%d blocks=%d ptr=%d\n",
                cinfo.bytes,cinfo.blocks,cinfo.ptr) );
            spin_unlock_irqrestore(&state->card->lock, flags);
            return copy_to_user((void *)arg, &cinfo, sizeof(cinfo));
        }
        return -ENODEV;

    case SNDCTL_DSP_SETDUPLEX:
        return 0;

    case SNDCTL_DSP_GETODELAY:
        if (!(file->f_mode & FMODE_WRITE))
            return -EINVAL;
        state = (struct cs_state *)card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            spin_lock_irqsave(&state->card->lock, flags);
            cs_update_ptr(card, CS_TRUE);
            val = dmabuf->count;
            spin_unlock_irqrestore(&state->card->lock, flags);
        }
        else
            val = 0;
        return put_user(val, (int *)arg);

    case SOUND_PCM_READ_RATE:
        if(file->f_mode & FMODE_READ)
            state = (struct cs_state *)card->states[0];
        else 
            state = (struct cs_state *)card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            return put_user(dmabuf->rate, (int *)arg);
        }
        return put_user(0, (int *)arg);
        

    case SOUND_PCM_READ_CHANNELS:
        if(file->f_mode & FMODE_READ)
            state = (struct cs_state *)card->states[0];
        else 
            state = (struct cs_state *)card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            return put_user((dmabuf->fmt & CS_FMT_STEREO) ? 2 : 1,
                (int *)arg);
        }
        return put_user(0, (int *)arg);

    case SOUND_PCM_READ_BITS:
        if(file->f_mode & FMODE_READ)
            state = (struct cs_state *)card->states[0];
        else 
            state = (struct cs_state *)card->states[1];
        if(state)
        {
            dmabuf = &state->dmabuf;
            return put_user((dmabuf->fmt & CS_FMT_16BIT) ? 
                  AFMT_S16_LE : AFMT_U8, (int *)arg);

        }
        return put_user(0, (int *)arg);

    case SNDCTL_DSP_MAPINBUF:
    case SNDCTL_DSP_MAPOUTBUF:
    case SNDCTL_DSP_SETSYNCRO:
    case SOUND_PCM_WRITE_FILTER:
    case SOUND_PCM_READ_FILTER:
        return -EINVAL;
    }
    return -EINVAL;
}


/*
 *    AMP control - null AMP
 */
 
static void amp_none(struct cs_card *card, int change)
{    
}

/*
 *    Crystal EAPD mode
 */
 
static void amp_voyetra(struct cs_card *card, int change)
{
    /* Manage the EAPD bit on the Crystal 4297 
       and the Analog AD1885 */
       
    int old=card->amplifier;
    
    card->amplifier+=change;
    if(card->amplifier && !old)
    {
        /* Turn the EAPD amp on */
        cs_ac97_set(card->ac97_codec[0],  AC97_POWER_CONTROL, 
            cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) |
                0x8000);
    }
    else if(old && !card->amplifier)
    {
        /* Turn the EAPD amp off */
        cs_ac97_set(card->ac97_codec[0],  AC97_POWER_CONTROL, 
            cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) &
                ~0x8000);
    }
}

               
/*
 *    Game Theatre XP card - EGPIO[2] is used to enable the external amp.
 */
 
static void amp_hercules(struct cs_card *card, int change)
{
    int old=card->amplifier;
    if(!card)
    {
        CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO 
            "cs46xx: amp_hercules() called before initialized.\n"));
        return;
    }
    card->amplifier+=change;
    if( (card->amplifier && !old) && !(hercules_egpio_disable))
    {
        CS_DBGOUT(CS_PARMS, 4, printk(KERN_INFO 
            "cs46xx: amp_hercules() external amp enabled\n"));
        cs461x_pokeBA0(card, BA0_EGPIODR, 
            EGPIODR_GPOE2);     /* enable EGPIO2 output */
        cs461x_pokeBA0(card, BA0_EGPIOPTR, 
            EGPIOPTR_GPPT2);   /* open-drain on output */
    }
    else if(old && !card->amplifier)
    {
        CS_DBGOUT(CS_PARMS, 4, printk(KERN_INFO 
            "cs46xx: amp_hercules() external amp disabled\n"));
        cs461x_pokeBA0(card, BA0_EGPIODR, 0); /* disable */
        cs461x_pokeBA0(card, BA0_EGPIOPTR, 0); /* disable */
    }
}

/*
 *    Handle the CLKRUN on a thinkpad. We must disable CLKRUN support
 *    whenever we need to beat on the chip.
 *
 *    The original idea and code for this hack comes from David Kaiser at
 *    Linuxcare. Perhaps one day Crystal will document their chips well
 *    enough to make them useful.
 */
 
static void clkrun_hack(struct cs_card *card, int change)
{
    struct pci_dev *acpi_dev;
    u16 control;
    u8 pp;
    unsigned long port;
    int old=card->active;
    
    card->active+=change;
    
    acpi_dev = pci_find_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, NULL);
    if(acpi_dev == NULL)
        return;        /* Not a thinkpad thats for sure */

    /* Find the control port */        
    pci_read_config_byte(acpi_dev, 0x41, &pp);
    port=pp<<8;

    /* Read ACPI port */    
    control=inw(port+0x10);

    /* Flip CLKRUN off while running */
    if(!card->active && old)
    {
        CS_DBGOUT(CS_PARMS , 9, printk( KERN_INFO
            "cs46xx: clkrun() enable clkrun - change=%d active=%d\n",
                change,card->active));
        outw(control|0x2000, port+0x10);
    }
    else 
    {
    /*
    * sometimes on a resume the bit is set, so always reset the bit.
    */
        CS_DBGOUT(CS_PARMS , 9, printk( KERN_INFO
            "cs46xx: clkrun() disable clkrun - change=%d active=%d\n",
                change,card->active));
        outw(control&~0x2000, port+0x10);
    }
}

    
static int cs_open(struct inode *inode, struct file *file)
{
    struct cs_card *card = (struct cs_card *)file->private_data;
    struct cs_state *state = NULL;
    struct dmabuf *dmabuf = NULL;
    struct list_head *entry;
        int minor = MINOR(inode->i_rdev);
    int ret=0;
    unsigned int tmp;

    CS_DBGOUT(CS_OPEN | CS_FUNCTION, 2, printk("cs46xx: cs_open()+ file=0x%x %s %s\n",
        (unsigned)file, file->f_mode & FMODE_WRITE ? "FMODE_WRITE" : "",
        file->f_mode & FMODE_READ ? "FMODE_READ" : "") );

    list_for_each(entry, &cs46xx_devs)
    {
        card = list_entry(entry, struct cs_card, list);

        if (!((card->dev_audio ^ minor) & ~0xf))
            break;
    }
    if (entry == &cs46xx_devs)
        return -ENODEV;
    if (!card) {
        CS_DBGOUT(CS_FUNCTION | CS_OPEN, 2, printk(KERN_INFO
            "cs46xx: cs_open(): Error - unable to find audio card struct\n"));
        return -ENODEV;
    }

    /*
     * hardcode state[0] for capture, [1] for playback
     */
    if(file->f_mode & FMODE_READ)
    {
        CS_DBGOUT(CS_WAVE_READ, 2, printk("cs46xx: cs_open() FMODE_READ\n") );
        if (card->states[0] == NULL) {
            state = card->states[0] = (struct cs_state *)
                kmalloc(sizeof(struct cs_state), GFP_KERNEL);
            if (state == NULL)
                return -ENOMEM;
            memset(state, 0, sizeof(struct cs_state));
            init_MUTEX(&state->sem);
            dmabuf = &state->dmabuf;
            dmabuf->pbuf = (void *)get_free_page(GFP_KERNEL | GFP_DMA);
            if(dmabuf->pbuf==NULL)
            {
                kfree(state);
                card->states[0]=NULL;
                return -ENOMEM;
            }
        }
        else
        {
            state = card->states[0];
            if(state->open_mode & FMODE_READ)
                return -EBUSY;
        }
        dmabuf->channel = card->alloc_rec_pcm_channel(card);
            
        if (dmabuf->channel == NULL) {
            kfree (card->states[0]);
            card->states[0] = NULL;;
            return -ENODEV;
        }

        /* Now turn on external AMP if needed */
        state->card = card;
        state->card->active_ctrl(state->card,1);
        state->card->amplifier_ctrl(state->card,1);
        
        if( (tmp = cs46xx_powerup(card, CS_POWER_ADC)) )
        {
            CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
                "cs46xx: cs46xx_powerup of ADC failed (0x%x)\n",tmp) );
            return -EIO;
        }

        dmabuf->channel->state = state;
        /* initialize the virtual channel */
        state->virt = 0;
        state->magic = CS_STATE_MAGIC;
        init_waitqueue_head(&dmabuf->wait);
        init_MUTEX(&state->open_sem);
        file->private_data = card;

        down(&state->open_sem);

        /* set default sample format. According to OSS Programmer's Guide  /dev/dsp
           should be default to unsigned 8-bits, mono, with sample rate 8kHz and
           /dev/dspW will accept 16-bits sample */

        /* Default input is 8bit mono */
        dmabuf->fmt &= ~CS_FMT_MASK;
        dmabuf->type = CS_TYPE_ADC;
        dmabuf->ossfragshift = 0;
        dmabuf->ossmaxfrags  = 0;
        dmabuf->subdivision  = 0;
        cs_set_adc_rate(state, 8000);
        cs_set_divisor(dmabuf);

        state->open_mode |= FMODE_READ;
        up(&state->open_sem);
    }
    if(file->f_mode & FMODE_WRITE)
    {
        CS_DBGOUT(CS_OPEN, 2, printk("cs46xx: cs_open() FMODE_WRITE\n") );
        if (card->states[1] == NULL) {
            state = card->states[1] = (struct cs_state *)
                kmalloc(sizeof(struct cs_state), GFP_KERNEL);
            if (state == NULL)
                return -ENOMEM;
            memset(state, 0, sizeof(struct cs_state));
            init_MUTEX(&state->sem);
            dmabuf = &state->dmabuf;
            dmabuf->pbuf = (void *)get_free_page(GFP_KERNEL | GFP_DMA);
            if(dmabuf->pbuf==NULL)
            {
                kfree(state);
                card->states[1]=NULL;
                return -ENOMEM;
            }
        }
        else
        {
            state = card->states[1];
            if(state->open_mode & FMODE_WRITE)
                return -EBUSY;
        }
        dmabuf->channel = card->alloc_pcm_channel(card);
            
        if (dmabuf->channel == NULL) {
            kfree (card->states[1]);
            card->states[1] = NULL;;
            return -ENODEV;
        }

        /* Now turn on external AMP if needed */
        state->card = card;
        state->card->active_ctrl(state->card,1);
        state->card->amplifier_ctrl(state->card,1);

        if( (tmp = cs46xx_powerup(card, CS_POWER_DAC)) )
        {
            CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
                "cs46xx: cs46xx_powerup of DAC failed (0x%x)\n",tmp) );
            return -EIO;
        }
        
        dmabuf->channel->state = state;
        /* initialize the virtual channel */
        state->virt = 1;
        state->magic = CS_STATE_MAGIC;
        init_waitqueue_head(&dmabuf->wait);
        init_MUTEX(&state->open_sem);
        file->private_data = card;

        down(&state->open_sem);

        /* set default sample format. According to OSS Programmer's Guide  /dev/dsp
           should be default to unsigned 8-bits, mono, with sample rate 8kHz and
           /dev/dspW will accept 16-bits sample */

        /* Default output is 8bit mono. */
        dmabuf->fmt &= ~CS_FMT_MASK;
        dmabuf->type = CS_TYPE_DAC;
        dmabuf->ossfragshift = 0;
        dmabuf->ossmaxfrags  = 0;
        dmabuf->subdivision  = 0;
        cs_set_dac_rate(state, 8000);
        cs_set_divisor(dmabuf);

        state->open_mode |= FMODE_WRITE;
        up(&state->open_sem);
        if((ret = prog_dmabuf(state)))
            return ret;
    }
    MOD_INC_USE_COUNT;    /* for 2.2 */
    CS_DBGOUT(CS_OPEN | CS_FUNCTION, 2, printk("cs46xx: cs_open()- 0\n") );
    return 0;
}

static int cs_release(struct inode *inode, struct file *file)
{
    struct cs_card *card = (struct cs_card *)file->private_data;
    struct dmabuf *dmabuf;
    struct cs_state *state;
    unsigned int tmp;
    CS_DBGOUT(CS_RELEASE | CS_FUNCTION, 2, printk("cs46xx: cs_release()+ file=0x%x %s %s\n",
        (unsigned)file, file->f_mode & FMODE_WRITE ? "FMODE_WRITE" : "",
        file->f_mode & FMODE_READ ? "FMODE_READ" : "") );

    if (!(file->f_mode & (FMODE_WRITE | FMODE_READ)))
    {
        return -EINVAL;
    }
    state = card->states[1];
    if(state)
    {
        if ( (state->open_mode & FMODE_WRITE) & (file->f_mode & FMODE_WRITE) )
        {
            CS_DBGOUT(CS_RELEASE, 2, printk("cs46xx: cs_release() FMODE_WRITE\n") );
            dmabuf = &state->dmabuf;
            cs_clear_tail(state);
            drain_dac(state, file->f_flags & O_NONBLOCK);
            /* stop DMA state machine and free DMA buffers/channels */
            down(&state->open_sem);
            stop_dac(state);
            dealloc_dmabuf(state);
            state->card->free_pcm_channel(state->card, dmabuf->channel->num);
            free_page((unsigned long)state->dmabuf.pbuf);

            /* we're covered by the open_sem */
            up(&state->open_sem);
            state->card->states[state->virt] = NULL;
            state->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);

            if( (tmp = cs461x_powerdown(card, CS_POWER_DAC, CS_FALSE )) )
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO 
                    "cs46xx: cs_release_mixdev() powerdown DAC failure (0x%x)\n",tmp) );
            }

            /* Now turn off external AMP if needed */
            state->card->amplifier_ctrl(state->card, -1);
            state->card->active_ctrl(state->card, -1);

            kfree(state);
        }
    }

    state = card->states[0];
    if(state)
    {
        if ( (state->open_mode & FMODE_READ) & (file->f_mode & FMODE_READ) )
        {
            CS_DBGOUT(CS_RELEASE, 2, printk("cs46xx: cs_release() FMODE_READ\n") );
            dmabuf = &state->dmabuf;
            down(&state->open_sem);
            stop_adc(state);
            dealloc_dmabuf(state);
            state->card->free_pcm_channel(state->card, dmabuf->channel->num);
            free_page((unsigned long)state->dmabuf.pbuf);

            /* we're covered by the open_sem */
            up(&state->open_sem);
            state->card->states[state->virt] = NULL;
            state->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE);

            if( (tmp = cs461x_powerdown(card, CS_POWER_ADC, CS_FALSE )) )
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO 
                    "cs46xx: cs_release_mixdev() powerdown ADC failure (0x%x)\n",tmp) );
            }

            /* Now turn off external AMP if needed */
            state->card->amplifier_ctrl(state->card, -1);
            state->card->active_ctrl(state->card, -1);

            kfree(state);
        }
    }

    CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 2, printk("cs46xx: cs_release()- 0\n") );
    MOD_DEC_USE_COUNT;    /* For 2.2 */
    return 0;
}

static void printpm(struct cs_card *s)
{
    CS_DBGOUT(CS_PM, 9, printk("pm struct:\n"));
    CS_DBGOUT(CS_PM, 9, printk("flags:0x%x u32CLKCR1_SAVE: 0%x u32SSPMValue: 0x%x\n",
        (unsigned)s->pm.flags,s->pm.u32CLKCR1_SAVE,s->pm.u32SSPMValue));
    CS_DBGOUT(CS_PM, 9, printk("u32PPLVCvalue: 0x%x u32PPRVCvalue: 0x%x\n",
        s->pm.u32PPLVCvalue,s->pm.u32PPRVCvalue));
    CS_DBGOUT(CS_PM, 9, printk("u32FMLVCvalue: 0x%x u32FMRVCvalue: 0x%x\n",
        s->pm.u32FMLVCvalue,s->pm.u32FMRVCvalue));
    CS_DBGOUT(CS_PM, 9, printk("u32GPIORvalue: 0x%x u32JSCTLvalue: 0x%x\n",
        s->pm.u32GPIORvalue,s->pm.u32JSCTLvalue));
    CS_DBGOUT(CS_PM, 9, printk("u32SSCR: 0x%x u32SRCSA: 0x%x\n",
        s->pm.u32SSCR,s->pm.u32SRCSA));
    CS_DBGOUT(CS_PM, 9, printk("u32DacASR: 0x%x u32AdcASR: 0x%x\n",
        s->pm.u32DacASR,s->pm.u32AdcASR));
    CS_DBGOUT(CS_PM, 9, printk("u32DacSR: 0x%x u32AdcSR: 0x%x\n",
        s->pm.u32DacSR,s->pm.u32AdcSR));
    CS_DBGOUT(CS_PM, 9, printk("u32MIDCR_Save: 0x%x\n",
        s->pm.u32MIDCR_Save));
    CS_DBGOUT(CS_PM, 9, printk("u32AC97_powerdown: 0x%x _general_purpose 0x%x\n",
        s->pm.u32AC97_powerdown,s->pm.u32AC97_general_purpose));
    CS_DBGOUT(CS_PM, 9, printk("u32AC97_master_volume: 0x%x\n",
        s->pm.u32AC97_master_volume));
    CS_DBGOUT(CS_PM, 9, printk("u32AC97_headphone_volume: 0x%x\n",
        s->pm.u32AC97_headphone_volume));
    CS_DBGOUT(CS_PM, 9, printk("u32AC97_master_volume_mono: 0x%x\n",
        s->pm.u32AC97_master_volume_mono));
    CS_DBGOUT(CS_PM, 9, printk("u32AC97_pcm_out_volume: 0x%x\n",
        s->pm.u32AC97_pcm_out_volume));
    CS_DBGOUT(CS_PM, 9, printk("dmabuf_swptr_play: 0x%x dmabuf_count_play: %d\n",
        s->pm.dmabuf_swptr_play,s->pm.dmabuf_count_play));
    CS_DBGOUT(CS_PM, 9, printk("dmabuf_swptr_capture: 0x%x dmabuf_count_capture: %d\n",
        s->pm.dmabuf_swptr_capture,s->pm.dmabuf_count_capture));

}

/****************************************************************************
*
*  Suspend - save the ac97 regs, mute the outputs and power down the part.  
*
****************************************************************************/
void cs46xx_ac97_suspend(struct cs_card *card)
{
    int Count,i;
    struct ac97_codec *dev=card->ac97_codec[0];
    unsigned int tmp;

    CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_suspend()+\n"));

    if(card->states[1])
    {
        stop_dac(card->states[1]);
        resync_dma_ptrs(card->states[1]);
    }
    if(card->states[0])
    {
        stop_adc(card->states[0]);
        resync_dma_ptrs(card->states[0]);
    }

    for(Count = 0x2, i=0; (Count <= CS46XX_AC97_HIGHESTREGTORESTORE)
            && (i < CS46XX_AC97_NUMBER_RESTORE_REGS); 
        Count += 2, i++)
    {
        card->pm.ac97[i] = cs_ac97_get(dev, BA0_AC97_RESET + Count);
    }
/*
* Save the ac97 volume registers as well as the current powerdown state.
* Now, mute the all the outputs (master, headphone, and mono), as well
* as the PCM volume, in preparation for powering down the entire part.
    card->pm.u32AC97_master_volume = (u32)cs_ac97_get( dev, 
            (u8)BA0_AC97_MASTER_VOLUME); 
    card->pm.u32AC97_headphone_volume = (u32)cs_ac97_get(dev, 
            (u8)BA0_AC97_HEADPHONE_VOLUME); 
    card->pm.u32AC97_master_volume_mono = (u32)cs_ac97_get(dev, 
            (u8)BA0_AC97_MASTER_VOLUME_MONO); 
    card->pm.u32AC97_pcm_out_volume = (u32)cs_ac97_get(dev, 
            (u8)BA0_AC97_PCM_OUT_VOLUME);
*/ 
/*
* mute the outputs
*/
    cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME, 0x8000);
    cs_ac97_set(dev, (u8)BA0_AC97_HEADPHONE_VOLUME, 0x8000);
    cs_ac97_set(dev, (u8)BA0_AC97_MASTER_VOLUME_MONO, 0x8000);
    cs_ac97_set(dev, (u8)BA0_AC97_PCM_OUT_VOLUME, 0x8000);

/*
* save the registers that cause pops
*/
    card->pm.u32AC97_powerdown = (u32)cs_ac97_get(dev, (u8)AC97_POWER_CONTROL); 
    card->pm.u32AC97_general_purpose = (u32)cs_ac97_get(dev, (u8)BA0_AC97_GENERAL_PURPOSE); 
/*
* And power down everything on the AC97 codec.
* well, for now, only power down the DAC/ADC and MIXER VREFON components. 
* trouble with removing VREF.
*/
    if( (tmp = cs461x_powerdown(card, CS_POWER_DAC | CS_POWER_ADC |
            CS_POWER_MIXVON, CS_TRUE )) )
    {
        CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
            "cs46xx: cs46xx_ac97_suspend() failure (0x%x)\n",tmp) );
    }

    CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_suspend()-\n"));
}

/****************************************************************************
*
*  Resume - power up the part and restore its registers..  
*
****************************************************************************/
void cs46xx_ac97_resume(struct cs_card *card)
{
    int Count,i;
    struct ac97_codec *dev=card->ac97_codec[0];

    CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_resume()+\n"));

/*
* First, we restore the state of the general purpose register.  This
* contains the mic select (mic1 or mic2) and if we restore this after
* we restore the mic volume/boost state and mic2 was selected at
* suspend time, we will end up with a brief period of time where mic1
* is selected with the volume/boost settings for mic2, causing
* acoustic feedback.  So we restore the general purpose register
* first, thereby getting the correct mic selected before we restore
* the mic volume/boost.
*/
    cs_ac97_set(dev, (u8)BA0_AC97_GENERAL_PURPOSE, 
        (u16)card->pm.u32AC97_general_purpose);
/*
* Now, while the outputs are still muted, restore the state of power
* on the AC97 part.
*/
    cs_ac97_set(dev, (u8)BA0_AC97_POWERDOWN, (u16)card->pm.u32AC97_powerdown);
    mdelay(5 * cs_laptop_wait);
/*
* Restore just the first set of registers, from register number
* 0x02 to the register number that ulHighestRegToRestore specifies.
*/
    for(    Count = 0x2, i=0; 
        (Count <= CS46XX_AC97_HIGHESTREGTORESTORE)
            && (i < CS46XX_AC97_NUMBER_RESTORE_REGS); 
        Count += 2, i++)
    {
        cs_ac97_set(dev, (u8)(BA0_AC97_RESET + Count), (u16)card->pm.ac97[i]);
    }

    /* Check if we have to init the amplifier */
    if(card->amp_init)
        card->amp_init(card);
        
    CS_DBGOUT(CS_PM, 9, printk("cs46xx: cs46xx_ac97_resume()-\n"));
}


static int cs46xx_restart_part(struct cs_card *card)
{
    struct dmabuf *dmabuf;
    CS_DBGOUT(CS_PM | CS_FUNCTION, 4, 
        printk( "cs46xx: cs46xx_restart_part()+\n"));
    if(card->states[1])
    {
        dmabuf = &card->states[1]->dmabuf;
        dmabuf->ready = 0;
        resync_dma_ptrs(card->states[1]);
        cs_set_divisor(dmabuf);
        if(__prog_dmabuf(card->states[1]))
        {
            CS_DBGOUT(CS_PM | CS_ERROR, 1, 
                printk("cs46xx: cs46xx_restart_part()- (-1) prog_dmabuf() dac error\n"));
            return -1;
        }
        cs_set_dac_rate(card->states[1], dmabuf->rate);
    }
    if(card->states[0])
    {
        dmabuf = &card->states[0]->dmabuf;
        dmabuf->ready = 0;
        resync_dma_ptrs(card->states[0]);
        cs_set_divisor(dmabuf);
        if(__prog_dmabuf(card->states[0]))
        {
            CS_DBGOUT(CS_PM | CS_ERROR, 1, 
                printk("cs46xx: cs46xx_restart_part()- (-1) prog_dmabuf() adc error\n"));
            return -1;
        }
        cs_set_adc_rate(card->states[0], dmabuf->rate);
    }
    card->pm.flags |= CS46XX_PM_RESUMED;
    if(card->states[0])
        start_adc(card->states[0]);
    if(card->states[1])
        start_dac(card->states[1]);

    card->pm.flags |= CS46XX_PM_IDLE;
    card->pm.flags &= ~(CS46XX_PM_SUSPENDING | CS46XX_PM_SUSPENDED 
            | CS46XX_PM_RESUMING | CS46XX_PM_RESUMED);
    if(card->states[0])
        wake_up(&card->states[0]->dmabuf.wait);
    if(card->states[1])
        wake_up(&card->states[1]->dmabuf.wait);

    CS_DBGOUT(CS_PM | CS_FUNCTION, 4, 
        printk( "cs46xx: cs46xx_restart_part()-\n"));
    return 0;
}


static void cs461x_reset(struct cs_card *card);
static void cs461x_proc_stop(struct cs_card *card);
static int cs46xx_suspend(struct cs_card *card, u32 state)
{
    unsigned int tmp;
    CS_DBGOUT(CS_PM | CS_FUNCTION, 4, 
        printk("cs46xx: cs46xx_suspend()+ flags=0x%x s=0x%x\n",
            (unsigned)card->pm.flags,(unsigned)card));
/*
* check the current state, only suspend if IDLE
*/
    if(!(card->pm.flags & CS46XX_PM_IDLE))
    {
        CS_DBGOUT(CS_PM | CS_ERROR, 2, 
            printk("cs46xx: cs46xx_suspend() unable to suspend, not IDLE\n"));
        return 1;
    }
    card->pm.flags &= ~CS46XX_PM_IDLE;
    card->pm.flags |= CS46XX_PM_SUSPENDING;

    card->active_ctrl(card,1);
    
    tmp = cs461x_peek(card, BA1_PFIE);
    tmp &= ~0x0000f03f;
    tmp |=  0x00000010;
    cs461x_poke(card, BA1_PFIE, tmp);    /* playback interrupt disable */

    tmp = cs461x_peek(card, BA1_CIE);
    tmp &= ~0x0000003f;
    tmp |=  0x00000011;
    cs461x_poke(card, BA1_CIE, tmp);    /* capture interrupt disable */

    /*
         *  Stop playback DMA.
     */
    tmp = cs461x_peek(card, BA1_PCTL);
    cs461x_poke(card, BA1_PCTL, tmp & 0x0000ffff);

    /*
         *  Stop capture DMA.
     */
    tmp = cs461x_peek(card, BA1_CCTL);
    cs461x_poke(card, BA1_CCTL, tmp & 0xffff0000);

    if(card->states[1])
    {
        card->pm.dmabuf_swptr_play = card->states[1]->dmabuf.swptr;
        card->pm.dmabuf_count_play = card->states[1]->dmabuf.count;
    }
    if(card->states[0])
    {
        card->pm.dmabuf_swptr_capture = card->states[0]->dmabuf.swptr;
        card->pm.dmabuf_count_capture = card->states[0]->dmabuf.count;
    }

    cs46xx_ac97_suspend(card);

    /*
         *  Reset the processor.
         */
    cs461x_reset(card);

    cs461x_proc_stop(card);

    /*
     *  Power down the DAC and ADC.  For now leave the other areas on.
     */
    cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, 0x0300);

    /*
     *  Power down the PLL.
     */
    cs461x_pokeBA0(card, BA0_CLKCR1, 0);

    /*
     *  Turn off the Processor by turning off the software clock enable flag in 
     *  the clock control register.
     */
    tmp = cs461x_peekBA0(card, BA0_CLKCR1) & ~CLKCR1_SWCE;
    cs461x_pokeBA0(card, BA0_CLKCR1, tmp);

    card->active_ctrl(card,-1);

    card->pm.flags &= ~CS46XX_PM_SUSPENDING;
    card->pm.flags |= CS46XX_PM_SUSPENDED;

    printpm(card);

    CS_DBGOUT(CS_PM | CS_FUNCTION, 4, 
        printk("cs46xx: cs46xx_suspend()- flags=0x%x\n",
            (unsigned)card->pm.flags));
    return 0;
}

static int cs46xx_resume(struct cs_card *card)
{
    int i;

    CS_DBGOUT(CS_PM | CS_FUNCTION, 4, 
        printk( "cs46xx: cs46xx_resume()+ flags=0x%x\n",
            (unsigned)card->pm.flags));
    if(!(card->pm.flags & CS46XX_PM_SUSPENDED))
    {
        CS_DBGOUT(CS_PM | CS_ERROR, 2, 
            printk("cs46xx: cs46xx_resume() unable to resume, not SUSPENDED\n"));
        return 1;
    }
    card->pm.flags |= CS46XX_PM_RESUMING;
    card->pm.flags &= ~CS46XX_PM_SUSPENDED;
    printpm(card);
    card->active_ctrl(card, 1);

    for(i=0;i<5;i++)
    {
        if (cs_hardware_init(card) != 0)
        {
            CS_DBGOUT(CS_PM | CS_ERROR, 4, printk(
                "cs46xx: cs46xx_resume()- ERROR in cs_hardware_init()\n"));
            mdelay(10 * cs_laptop_wait);
            cs461x_reset(card);
            continue;
        }
        break;
    }
    if(i>=4)
    {
        CS_DBGOUT(CS_PM | CS_ERROR, 1, printk(
            "cs46xx: cs46xx_resume()- cs_hardware_init() failed, retried %d times.\n",i));
        return 0;
    }

    if(cs46xx_restart_part(card))
    {
        CS_DBGOUT(CS_PM | CS_ERROR, 4, printk(
            "cs46xx: cs46xx_resume(): cs46xx_restart_part() returned error\n"));
    }

    card->active_ctrl(card, -1);

    CS_DBGOUT(CS_PM | CS_FUNCTION, 4, printk("cs46xx: cs46xx_resume()- flags=0x%x\n",
        (unsigned)card->pm.flags));
    return 0;
}

static /*const*/ struct file_operations cs461x_fops = {
    CS_OWNER    CS_THIS_MODULE
    llseek:        no_llseek,
    read:        cs_read,
    write:        cs_write,
    poll:        cs_poll,
    ioctl:        cs_ioctl,
    mmap:        cs_mmap,
    open:        cs_open,
    release:    cs_release,
};

/* Write AC97 codec registers */


static u16 cs_ac97_get(struct ac97_codec *dev, u8 reg)
{
    struct cs_card *card = dev->private_data;
    int count,loopcnt;
    unsigned int tmp;
    
    /*
     *  1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
     *  2. Write ACCDA = Command Data Register = 470h    for data to write to AC97 
     *  3. Write ACCTL = Control Register = 460h for initiating the write
     *  4. Read ACCTL = 460h, DCV should be reset by now and 460h = 17h
     *  5. if DCV not cleared, break and return error
     *  6. Read ACSTS = Status Register = 464h, check VSTS bit
     */


    cs461x_peekBA0(card, BA0_ACSDA);

    /*
     *  Setup the AC97 control registers on the CS461x to send the
     *  appropriate command to the AC97 to perform the read.
     *  ACCAD = Command Address Register = 46Ch
     *  ACCDA = Command Data Register = 470h
     *  ACCTL = Control Register = 460h
     *  set DCV - will clear when process completed
     *  set CRW - Read command
     *  set VFRM - valid frame enabled
     *  set ESYN - ASYNC generation enabled
     *  set RSTN - ARST# inactive, AC97 codec not reset
     */

    cs461x_pokeBA0(card, BA0_ACCAD, reg);
    cs461x_pokeBA0(card, BA0_ACCDA, 0);
    cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW |
                         ACCTL_VFRM | ACCTL_ESYN |
                         ACCTL_RSTN);


    /*
     *  Wait for the read to occur.
     */
    if(!(card->pm.flags & CS46XX_PM_IDLE))
        loopcnt = 2000;
    else
        loopcnt = 500 * cs_laptop_wait;
     loopcnt *= cs_laptop_wait;
    for (count = 0; count < loopcnt; count++) {
        /*
         *  First, we want to wait for a short time.
          */
        udelay(10 * cs_laptop_wait);
        /*
         *  Now, check to see if the read has completed.
         *  ACCTL = 460h, DCV should be reset by now and 460h = 17h
         */
        if (!(cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV))
            break;
    }

    /*
     *  Make sure the read completed.
     */
    if (cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV) {
        CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
            "cs46xx: AC'97 read problem (ACCTL_DCV), reg = 0x%x returning 0xffff\n", reg));
        return 0xffff;
    }

    /*
     *  Wait for the valid status bit to go active.
     */

    if(!(card->pm.flags & CS46XX_PM_IDLE))
        loopcnt = 2000;
    else
        loopcnt = 1000;
     loopcnt *= cs_laptop_wait;
    for (count = 0; count < loopcnt; count++) {
        /*
         *  Read the AC97 status register.
         *  ACSTS = Status Register = 464h
         *  VSTS - Valid Status
         */
        if (cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_VSTS)
            break;
        udelay(10 * cs_laptop_wait);
    }
    
    /*
     *  Make sure we got valid status.
     */
    if (!( (tmp=cs461x_peekBA0(card, BA0_ACSTS)) & ACSTS_VSTS)) {
        CS_DBGOUT(CS_ERROR, 2, printk(KERN_WARNING 
            "cs46xx: AC'97 read problem (ACSTS_VSTS), reg = 0x%x val=0x%x 0xffff \n", 
                reg, tmp));
        return 0xffff;
    }

    /*
     *  Read the data returned from the AC97 register.
     *  ACSDA = Status Data Register = 474h
     */
    CS_DBGOUT(CS_FUNCTION, 9, printk(KERN_INFO
        "cs46xx: cs_ac97_get() reg = 0x%x, val = 0x%x, BA0_ACCAD = 0x%x\n", 
            reg, cs461x_peekBA0(card, BA0_ACSDA),
            cs461x_peekBA0(card, BA0_ACCAD)));
    return(cs461x_peekBA0(card, BA0_ACSDA));
}

static void cs_ac97_set(struct ac97_codec *dev, u8 reg, u16 val)
{
    struct cs_card *card = dev->private_data;
    int count;
    int val2 = 0;
    
    if(reg == AC97_CD_VOL)
    {
        val2 = cs_ac97_get(dev, AC97_CD_VOL);
    }
    
    /*
     *  1. Write ACCAD = Command Address Register = 46Ch for AC97 register address
     *  2. Write ACCDA = Command Data Register = 470h    for data to write to AC97
     *  3. Write ACCTL = Control Register = 460h for initiating the write
     *  4. Read ACCTL = 460h, DCV should be reset by now and 460h = 07h
     *  5. if DCV not cleared, break and return error
     */

    /*
     *  Setup the AC97 control registers on the CS461x to send the
     *  appropriate command to the AC97 to perform the read.
     *  ACCAD = Command Address Register = 46Ch
     *  ACCDA = Command Data Register = 470h
     *  ACCTL = Control Register = 460h
     *  set DCV - will clear when process completed
     *  reset CRW - Write command
     *  set VFRM - valid frame enabled
     *  set ESYN - ASYNC generation enabled
     *  set RSTN - ARST# inactive, AC97 codec not reset
         */
    cs461x_pokeBA0(card, BA0_ACCAD, reg);
    cs461x_pokeBA0(card, BA0_ACCDA, val);
    cs461x_peekBA0(card, BA0_ACCTL);
    cs461x_pokeBA0(card, BA0_ACCTL, 0 | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
    cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM |
                             ACCTL_ESYN | ACCTL_RSTN);
    for (count = 0; count < 1000; count++) {
        /*
         *  First, we want to wait for a short time.
         */
        udelay(10 * cs_laptop_wait);
        /*
         *  Now, check to see if the write has completed.
         *  ACCTL = 460h, DCV should be reset by now and 460h = 07h
         */
        if (!(cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV))
            break;
    }
    /*
     *  Make sure the write completed.
     */
    if (cs461x_peekBA0(card, BA0_ACCTL) & ACCTL_DCV)
    {
        CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
            "cs46xx: AC'97 write problem, reg = 0x%x, val = 0x%x\n", reg, val));
    }

    /*
     *    Adjust power if the mixer is selected/deselected according
     *    to the CD.
     *
     *    IF the CD is a valid input source (mixer or direct) AND
     *        the CD is not muted THEN power is needed
     *
     *    We do two things. When record select changes the input to
     *    add/remove the CD we adjust the power count if the CD is
     *    unmuted.
     *
     *    When the CD mute changes we adjust the power level if the
     *    CD was a valid input.
     *
     *      We also check for CD volume != 0, as the CD mute isn't
     *      normally tweaked from userspace.
     */
     
    /* CD mute change ? */
    
    if(reg==AC97_CD_VOL)
    {
        /* Mute bit change ? */
        if((val2^val)&0x8000 || ((val2 == 0x1f1f || val == 0x1f1f) && val2 != val))
        {
            /* This is a hack but its cleaner than the alternatives.
               Right now card->ac97_codec[0] might be NULL as we are
               still doing codec setup. This does an early assignment
               to avoid the problem if it occurs */
               
            if(card->ac97_codec[0]==NULL)
                card->ac97_codec[0]=dev;
                
            /* Mute on */
            if(val&0x8000 || val == 0x1f1f)
                card->amplifier_ctrl(card, -1);
            else /* Mute off power on */
            {
                if(card->amp_init)
                    card->amp_init(card);
                card->amplifier_ctrl(card, 1);
            }
        }
    }
}


/* OSS /dev/mixer file operation methods */

static int cs_open_mixdev(struct inode *inode, struct file *file)
{
    int i=0;
    int minor = MINOR(inode->i_rdev);
    struct cs_card *card=NULL;
    struct list_head *entry;
    unsigned int tmp;

    CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
          printk(KERN_INFO "cs46xx: cs_open_mixdev()+\n"));

    list_for_each(entry, &cs46xx_devs)
    {
        card = list_entry(entry, struct cs_card, list);
        for (i = 0; i < NR_AC97; i++)
            if (card->ac97_codec[i] != NULL &&
                card->ac97_codec[i]->dev_mixer == minor)
                goto match;
    }
    if (!card)
    {
        CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
            printk(KERN_INFO "cs46xx: cs46xx_open_mixdev()- -ENODEV\n"));
        return -ENODEV;
    }
 match:
    if(!card->ac97_codec[i])
        return -ENODEV;
    file->private_data = card->ac97_codec[i];

    card->active_ctrl(card,1);
    if(!CS_IN_USE(&card->mixer_use_cnt))
    {
        if( (tmp = cs46xx_powerup(card, CS_POWER_MIXVON )) )
        {
            CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
                "cs46xx: cs_open_mixdev() powerup failure (0x%x)\n",tmp) );
            return -EIO;
        }
    }
    card->amplifier_ctrl(card, 1);
    CS_INC_USE_COUNT(&card->mixer_use_cnt);
    MOD_INC_USE_COUNT; /* for 2.2 */
    CS_DBGOUT(CS_FUNCTION | CS_OPEN, 4,
          printk(KERN_INFO "cs46xx: cs_open_mixdev()- 0\n"));
    return 0;
}

static int cs_release_mixdev(struct inode *inode, struct file *file)
{
    int minor = MINOR(inode->i_rdev);
    struct cs_card *card=NULL;
    struct list_head *entry;
    int i;
    unsigned int tmp;

    CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 4,
          printk(KERN_INFO "cs46xx: cs_release_mixdev()+\n"));
    list_for_each(entry, &cs46xx_devs)
    {
        card = list_entry(entry, struct cs_card, list);
        for (i = 0; i < NR_AC97; i++)
            if (card->ac97_codec[i] != NULL &&
                card->ac97_codec[i]->dev_mixer == minor)
                goto match;
    }
    if (!card)
    {
        CS_DBGOUT(CS_FUNCTION | CS_OPEN | CS_ERROR, 2,
            printk(KERN_INFO "cs46xx: cs46xx_open_mixdev()- -ENODEV\n"));
        return -ENODEV;
    }
match:
    MOD_DEC_USE_COUNT; /* for 2.2 */
    if(!CS_DEC_AND_TEST(&card->mixer_use_cnt))
    {
        CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 4,
              printk(KERN_INFO "cs46xx: cs_release_mixdev()- no powerdown, usecnt>0\n"));
        card->active_ctrl(card, -1);
        card->amplifier_ctrl(card, -1);
        return 0;
    }
/*
* ok, no outstanding mixer opens, so powerdown.
*/
    if( (tmp = cs461x_powerdown(card, CS_POWER_MIXVON, CS_FALSE )) )
    {
        CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
            "cs46xx: cs_release_mixdev() powerdown MIXVON failure (0x%x)\n",tmp) );
        card->active_ctrl(card, -1);
        card->amplifier_ctrl(card, -1);
        return -EIO;
    }
    card->active_ctrl(card, -1);
    card->amplifier_ctrl(card, -1);
    CS_DBGOUT(CS_FUNCTION | CS_RELEASE, 4,
          printk(KERN_INFO "cs46xx: cs_release_mixdev()- 0\n"));
    return 0;
}

void __exit cs46xx_cleanup_module(void);
static int cs_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd,
                unsigned long arg)
{
    struct ac97_codec *codec = (struct ac97_codec *)file->private_data;
    struct cs_card *card=NULL;
    struct list_head *entry;

#if CSDEBUG_INTERFACE
        int val;

    if(     (cmd == SOUND_MIXER_CS_GETDBGMASK) || 
        (cmd == SOUND_MIXER_CS_SETDBGMASK) ||
        (cmd == SOUND_MIXER_CS_GETDBGLEVEL) ||
        (cmd == SOUND_MIXER_CS_SETDBGLEVEL) ||
        (cmd == SOUND_MIXER_CS_APM))
    {
        switch(cmd)
        {

        case SOUND_MIXER_CS_GETDBGMASK:
            return put_user(cs_debugmask, (unsigned long *)arg);
        
        case SOUND_MIXER_CS_GETDBGLEVEL:
            return put_user(cs_debuglevel, (unsigned long *)arg);

        case SOUND_MIXER_CS_SETDBGMASK:
            if (get_user(val, (unsigned long *)arg))
                return -EFAULT;
            cs_debugmask = val;
            return 0;

        case SOUND_MIXER_CS_SETDBGLEVEL:
            if (get_user(val, (unsigned long *)arg))
                return -EFAULT;
            cs_debuglevel = val;
            return 0;

        case SOUND_MIXER_CS_APM:
            if (get_user(val, (unsigned long *) arg))
                return -EFAULT;
            if(val == CS_IOCTL_CMD_SUSPEND) 
            {
                list_for_each(entry, &cs46xx_devs)
                {
                    card = list_entry(entry, struct cs_card, list);
                    cs46xx_suspend(card, 0);
                }

            }
            else if(val == CS_IOCTL_CMD_RESUME)
            {
                list_for_each(entry, &cs46xx_devs)
                {
                    card = list_entry(entry, struct cs_card, list);
                    cs46xx_resume(card);
                }
            }
            else
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO
                    "cs46xx: mixer_ioctl(): invalid APM cmd (%d)\n",
                    val));
            }
            return 0;

        default:
            CS_DBGOUT(CS_ERROR, 1, printk(KERN_INFO 
                "cs46xx: mixer_ioctl(): ERROR unknown debug cmd\n") );
            return 0;
        }
    }
#endif
    return codec->mixer_ioctl(codec, cmd, arg);
}

static /*const*/ struct file_operations cs_mixer_fops = {
    CS_OWNER    CS_THIS_MODULE
    llseek:        no_llseek,
    ioctl:        cs_ioctl_mixdev,
    open:        cs_open_mixdev,
    release:    cs_release_mixdev,
};

/* AC97 codec initialisation. */
static int __init cs_ac97_init(struct cs_card *card)
{
    int num_ac97 = 0;
    int ready_2nd = 0;
    struct ac97_codec *codec;
    u16 eid;

    CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO 
        "cs46xx: cs_ac97_init()+\n") );

    for (num_ac97 = 0; num_ac97 < NR_AC97; num_ac97++) {
        if ((codec = kmalloc(sizeof(struct ac97_codec), GFP_KERNEL)) == NULL)
            return -ENOMEM;
        memset(codec, 0, sizeof(struct ac97_codec));

        /* initialize some basic codec information, other fields will be filled
           in ac97_probe_codec */
        codec->private_data = card;
        codec->id = num_ac97;

        codec->codec_read = cs_ac97_get;
        codec->codec_write = cs_ac97_set;
    
        if (ac97_probe_codec(codec) == 0)
        {
            CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO 
                "cs46xx: cs_ac97_init()- codec number %d not found\n",
                    num_ac97) );
            card->ac97_codec[num_ac97] = 0;
            break;
        }
        CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO 
            "cs46xx: cs_ac97_init() found codec %d\n",num_ac97) );

        eid = cs_ac97_get(codec, AC97_EXTENDED_ID);
        
        if(eid==0xFFFFFF)
        {
            printk(KERN_WARNING "cs46xx: codec %d not present\n",num_ac97);
            kfree(codec);
            break;
        }
        
        card->ac97_features = eid;
            
        if ((codec->dev_mixer = register_sound_mixer(&cs_mixer_fops, -1)) < 0) {
            printk(KERN_ERR "cs46xx: couldn't register mixer!\n");
            kfree(codec);
            break;
        }
        card->ac97_codec[num_ac97] = codec;

        CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO 
            "cs46xx: cs_ac97_init() ac97_codec[%d] set to 0x%x\n",
                (unsigned int)num_ac97,
                (unsigned int)codec));
        /* if there is no secondary codec at all, don't probe any more */
        if (!ready_2nd)
        {
            num_ac97 += 1;
            break;
        }
    }
    CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO 
        "cs46xx: cs_ac97_init()- %d\n", (unsigned int)num_ac97));
    return num_ac97;
}

/*
 * load the static image into the DSP
 */
#include "cs461x_image.h"
static void cs461x_download_image(struct cs_card *card)
{
    unsigned i, j, temp1, temp2, offset, count;
    unsigned char *pBA1 = ioremap(card->ba1_addr, 0x40000);
    for( i=0; i < CLEAR__COUNT; i++)
    {
        offset = ClrStat[i].BA1__DestByteOffset;
        count  = ClrStat[i].BA1__SourceSize;
        for(  temp1 = offset; temp1<(offset+count); temp1+=4 );
              writel(0, pBA1+temp1);
    }

    for(i=0; i<FILL__COUNT; i++)
    {
        temp2 = FillStat[i].Offset;
        for(j=0; j<(FillStat[i].Size)/4; j++)
        {
            temp1 = (FillStat[i]).pFill[j];
            writel(temp1, pBA1+temp2+j*4);
        }
    }
    iounmap(pBA1);
}


/*
 *  Chip reset
 */

static void cs461x_reset(struct cs_card *card)
{
    int idx;

    /*
     *  Write the reset bit of the SP control register.
     */
    cs461x_poke(card, BA1_SPCR, SPCR_RSTSP);

    /*
     *  Write the control register.
     */
    cs461x_poke(card, BA1_SPCR, SPCR_DRQEN);

    /*
     *  Clear the trap registers.
     */
    for (idx = 0; idx < 8; idx++) {
        cs461x_poke(card, BA1_DREG, DREG_REGID_TRAP_SELECT + idx);
        cs461x_poke(card, BA1_TWPR, 0xFFFF);
    }
    cs461x_poke(card, BA1_DREG, 0);

    /*
     *  Set the frame timer to reflect the number of cycles per frame.
     */
    cs461x_poke(card, BA1_FRMT, 0xadf);
}

static void cs461x_clear_serial_FIFOs(struct cs_card *card, int type)
{
    int idx, loop, startfifo=0, endfifo=0, powerdown1 = 0;
    unsigned int tmp;

    /*
     *  See if the devices are powered down.  If so, we must power them up first
     *  or they will not respond.
     */
    if (!((tmp = cs461x_peekBA0(card, BA0_CLKCR1)) & CLKCR1_SWCE)) {
        cs461x_pokeBA0(card, BA0_CLKCR1, tmp | CLKCR1_SWCE);
        powerdown1 = 1;
    }

    /*
     *  We want to clear out the serial port FIFOs so we don't end up playing
     *  whatever random garbage happens to be in them.  We fill the sample FIFOS
     *  with zero (silence).
         */
    cs461x_pokeBA0(card, BA0_SERBWP, 0);

    /*
    * Check for which FIFO locations to clear, if we are currently
    * playing or capturing then we don't want to put in 128 bytes of
    * "noise".
     */
    if(type & CS_TYPE_DAC)
    {
        startfifo = 128;
        endfifo = 256;
    }
    if(type & CS_TYPE_ADC)
    {
        startfifo = 0;
        if(!endfifo)
            endfifo = 128;
    }
    /*
     *  Fill sample FIFO locations (256 locations total).
     */
    for (idx = startfifo; idx < endfifo; idx++) {
        /*
         *  Make sure the previous FIFO write operation has completed.
         */
        for (loop = 0; loop < 5; loop++) {
            udelay(50);
            if (!(cs461x_peekBA0(card, BA0_SERBST) & SERBST_WBSY))
                break;
        }
        if (cs461x_peekBA0(card, BA0_SERBST) & SERBST_WBSY) {
            if (powerdown1)
                cs461x_pokeBA0(card, BA0_CLKCR1, tmp);
        }
        /*
         *  Write the serial port FIFO index.
         */
        cs461x_pokeBA0(card, BA0_SERBAD, idx);
        /*
         *  Tell the serial port to load the new value into the FIFO location.
         */
        cs461x_pokeBA0(card, BA0_SERBCM, SERBCM_WRC);
    }
    /*
     *  Now, if we powered up the devices, then power them back down again.
     *  This is kinda ugly, but should never happen.
     */
    if (powerdown1)
        cs461x_pokeBA0(card, BA0_CLKCR1, tmp);
}


static int cs461x_powerdown(struct cs_card *card, unsigned int type, int suspendflag)
{
    int count;
    unsigned int tmp=0,muted=0;

    CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO 
        "cs46xx: cs461x_powerdown()+ type=0x%x\n",type));
    if(!cs_powerdown && !suspendflag)
    {
        CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO 
            "cs46xx: cs461x_powerdown() DISABLED exiting\n"));
        return 0;
    }
    tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
    CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO 
        "cs46xx: cs461x_powerdown() powerdown reg=0x%x\n",tmp));
/*
* if powering down only the VREF, and not powering down the DAC/ADC,
* then do not power down the VREF, UNLESS both the DAC and ADC are not
* currently powered down.  If powering down DAC and ADC, then
* it is possible to power down the VREF (ON).
*/
    if (    ((type & CS_POWER_MIXVON) && 
         (!(type & CS_POWER_ADC) || (!(type & CS_POWER_DAC))) )
          && 
        ((tmp & CS_AC97_POWER_CONTROL_ADC_ON) ||
         (tmp & CS_AC97_POWER_CONTROL_DAC_ON) ) )
    {
        CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO 
            "cs46xx: cs461x_powerdown()- 0  unable to powerdown. tmp=0x%x\n",tmp));
        return 0;
    }
/*
* for now, always keep power to the mixer block.
* not sure why it's a problem but it seems to be if we power off.
*/
    type &= ~CS_POWER_MIXVON;
    type &= ~CS_POWER_MIXVOFF;

    /*
     *  Power down indicated areas.
     */
    if(type & CS_POWER_MIXVOFF)
    {

        CS_DBGOUT(CS_FUNCTION, 4, 
            printk(KERN_INFO "cs46xx: cs461x_powerdown()+ MIXVOFF\n"));
        /*
         *  Power down the MIXER (VREF ON) on the AC97 card.  
         */
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (tmp & CS_AC97_POWER_CONTROL_MIXVOFF_ON)
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp |= CS_AC97_POWER_CONTROL_MIXVOFF;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_MIXVOFF_ON))
                    break;
            }
            
            /*
             *  Check the status..
             */
            if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_MIXVOFF_ON)
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerdown MIXVOFF failed\n"));
                return 1;
            }
        }
    }
    if(type & CS_POWER_MIXVON)
    {

        CS_DBGOUT(CS_FUNCTION, 4, 
            printk(KERN_INFO "cs46xx: cs461x_powerdown()+ MIXVON\n"));
        /*
         *  Power down the MIXER (VREF ON) on the AC97 card.  
         */
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (tmp & CS_AC97_POWER_CONTROL_MIXVON_ON)
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp |= CS_AC97_POWER_CONTROL_MIXVON;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_MIXVON_ON))
                    break;
            }
            
            /*
             *  Check the status..
             */
            if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_MIXVON_ON)
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerdown MIXVON failed\n"));
                return 1;
            }
        }
    }
    if(type & CS_POWER_ADC)
    {
        /*
         *  Power down the ADC on the AC97 card.  
         */
        CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO "cs46xx: cs461x_powerdown()+ ADC\n"));
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (tmp & CS_AC97_POWER_CONTROL_ADC_ON)
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp |= CS_AC97_POWER_CONTROL_ADC;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );

            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_ADC_ON))
                    break;
            }

            /*
             *  Check the status..
             */
            if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_ADC_ON)
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerdown ADC failed\n"));
                return 1;
            }
        }
    }
    if(type & CS_POWER_DAC)
    {
        /*
         *  Power down the DAC on the AC97 card.  
         */

        CS_DBGOUT(CS_FUNCTION, 4, 
            printk(KERN_INFO "cs46xx: cs461x_powerdown()+ DAC\n"));
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (tmp & CS_AC97_POWER_CONTROL_DAC_ON)
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp |= CS_AC97_POWER_CONTROL_DAC;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_DAC_ON))
                    break;
            }
            
            /*
             *  Check the status..
             */
            if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_DAC_ON)
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerdown DAC failed\n"));
                return 1;
            }
        }
    }
    tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
    if(muted)
        cs_mute(card, CS_FALSE);
    CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO 
        "cs46xx: cs461x_powerdown()- 0 tmp=0x%x\n",tmp));
    return 0;
}

static int cs46xx_powerup(struct cs_card *card, unsigned int type)
{
    int count;
    unsigned int tmp=0,muted=0;

    CS_DBGOUT(CS_FUNCTION, 8, printk(KERN_INFO 
        "cs46xx: cs46xx_powerup()+ type=0x%x\n",type));
    /*
    * check for VREF and powerup if need to.
    */
    if(type & CS_POWER_MIXVON)
        type |= CS_POWER_MIXVOFF;
    if(type & (CS_POWER_DAC | CS_POWER_ADC))
        type |= CS_POWER_MIXVON | CS_POWER_MIXVOFF;

    /*
     *  Power up indicated areas.
     */
    if(type & CS_POWER_MIXVOFF)
    {

        CS_DBGOUT(CS_FUNCTION, 4, 
            printk(KERN_INFO "cs46xx: cs46xx_powerup()+ MIXVOFF\n"));
        /*
         *  Power up the MIXER (VREF ON) on the AC97 card.  
         */
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (!(tmp & CS_AC97_POWER_CONTROL_MIXVOFF_ON))
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp &= ~CS_AC97_POWER_CONTROL_MIXVOFF;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_MIXVOFF_ON)
                    break;
            }
            
            /*
             *  Check the status..
             */
            if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_MIXVOFF_ON))
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerup MIXVOFF failed\n"));
                return 1;
            }
        }
    }
    if(type & CS_POWER_MIXVON)
    {

        CS_DBGOUT(CS_FUNCTION, 4, 
            printk(KERN_INFO "cs46xx: cs46xx_powerup()+ MIXVON\n"));
        /*
         *  Power up the MIXER (VREF ON) on the AC97 card.  
         */
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (!(tmp & CS_AC97_POWER_CONTROL_MIXVON_ON))
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp &= ~CS_AC97_POWER_CONTROL_MIXVON;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_MIXVON_ON)
                    break;
            }
            
            /*
             *  Check the status..
             */
            if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_MIXVON_ON))
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerup MIXVON failed\n"));
                return 1;
            }
        }
    }
    if(type & CS_POWER_ADC)
    {
        /*
         *  Power up the ADC on the AC97 card.  
         */
        CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO "cs46xx: cs46xx_powerup()+ ADC\n"));
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (!(tmp & CS_AC97_POWER_CONTROL_ADC_ON))
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp &= ~CS_AC97_POWER_CONTROL_ADC;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );

            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_ADC_ON)
                    break;
            }

            /*
             *  Check the status..
             */
            if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_ADC_ON))
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerup ADC failed\n"));
                return 1;
            }
        }
    }
    if(type & CS_POWER_DAC)
    {
        /*
         *  Power up the DAC on the AC97 card.  
         */

        CS_DBGOUT(CS_FUNCTION, 4, 
            printk(KERN_INFO "cs46xx: cs46xx_powerup()+ DAC\n"));
        tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
        if (!(tmp & CS_AC97_POWER_CONTROL_DAC_ON))
        {
            if(!muted)
            {
                cs_mute(card, CS_TRUE);
                muted=1;
            }
            tmp &= ~CS_AC97_POWER_CONTROL_DAC;
            cs_ac97_set(card->ac97_codec[0], AC97_POWER_CONTROL, tmp );
            /*
             *  Now, we wait until we sample a ready state.
             */
            for (count = 0; count < 32; count++) {
                /*
                 *  First, lets wait a short while to let things settle out a
                 *  bit, and to prevent retrying the read too quickly.
                 */
                udelay(500);

                /*
                 *  Read the current state of the power control register.
                 */
                if (cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                    CS_AC97_POWER_CONTROL_DAC_ON)
                    break;
            }
            
            /*
             *  Check the status..
             */
            if (!(cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL) & 
                CS_AC97_POWER_CONTROL_DAC_ON))
            {
                CS_DBGOUT(CS_ERROR, 1, printk(KERN_WARNING 
                    "cs46xx: powerup DAC failed\n"));
                return 1;
            }
        }
    }
    tmp = cs_ac97_get(card->ac97_codec[0], AC97_POWER_CONTROL);
    if(muted)
        cs_mute(card, CS_FALSE);
    CS_DBGOUT(CS_FUNCTION, 4, printk(KERN_INFO 
        "cs46xx: cs46xx_powerup()- 0 tmp=0x%x\n",tmp));
    return 0;
}


static void cs461x_proc_start(struct cs_card *card)
{
    int cnt;

    /*
     *  Set the frame timer to reflect the number of cycles per frame.
     */
    cs461x_poke(card, BA1_FRMT, 0xadf);
    /*
     *  Turn on the run, run at frame, and DMA enable bits in the local copy of
     *  the SP control register.
     */
    cs461x_poke(card, BA1_SPCR, SPCR_RUN | SPCR_RUNFR | SPCR_DRQEN);
    /*
     *  Wait until the run at frame bit resets itself in the SP control
     *  register.
     */
    for (cnt = 0; cnt < 25; cnt++) {
        udelay(50);
        if (!(cs461x_peek(card, BA1_SPCR) & SPCR_RUNFR))
            break;
    }

    if (cs461x_peek(card, BA1_SPCR) & SPCR_RUNFR)
        printk(KERN_WARNING "cs46xx: SPCR_RUNFR never reset\n");
}

static void cs461x_proc_stop(struct cs_card *card)
{
    /*
     *  Turn off the run, run at frame, and DMA enable bits in the local copy of
     *  the SP control register.
     */
    cs461x_poke(card, BA1_SPCR, 0);
}

static int cs_hardware_init(struct cs_card *card)
{
    unsigned long end_time;
    unsigned int tmp,count;
    
    CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO 
        "cs46xx: cs_hardware_init()+\n") );
    /* 
     *  First, blast the clock control register to zero so that the PLL starts
         *  out in a known state, and blast the master serial port control register
         *  to zero so that the serial ports also start out in a known state.
         */
        cs461x_pokeBA0(card, BA0_CLKCR1, 0);
        cs461x_pokeBA0(card, BA0_SERMC1, 0);

    /*
     *  If we are in AC97 mode, then we must set the part to a host controlled
         *  AC-link.  Otherwise, we won't be able to bring up the link.
         */        
        cs461x_pokeBA0(card, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03);    /* 1.03 card */
        /* cs461x_pokeBA0(card, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); */ /* 2.00 card */

        /*
         *  Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
         *  spec) and then drive it high.  This is done for non AC97 modes since
         *  there might be logic external to the CS461x that uses the ARST# line
         *  for a reset.
         */
        cs461x_pokeBA0(card, BA0_ACCTL, 1);
        udelay(50);
        cs461x_pokeBA0(card, BA0_ACCTL, 0);
        udelay(50);
        cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_RSTN);

    /*
     *  The first thing we do here is to enable sync generation.  As soon
     *  as we start receiving bit clock, we'll start producing the SYNC
     *  signal.
     */
    cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);

    /*
     *  Now wait for a short while to allow the AC97 part to start
     *  generating bit clock (so we don't try to start the PLL without an
     *  input clock).
     */
    mdelay(5 * cs_laptop_wait);        /* 1 should be enough ?? (and pigs might fly) */

    /*
     *  Set the serial port timing configuration, so that
     *  the clock control circuit gets its clock from the correct place.
     */
    cs461x_pokeBA0(card, BA0_SERMC1, SERMC1_PTC_AC97);

    /*
    * The part seems to not be ready for a while after a resume.
    * so, if we are resuming, then wait for 700 mils.  Note that 600 mils
    * is not enough for some platforms! tested on an IBM Thinkpads and 
    * reference cards.
    */
    if(!(card->pm.flags & CS46XX_PM_IDLE))
        mdelay(initdelay);
    /*
     *  Write the selected clock control setup to the hardware.  Do not turn on
     *  SWCE yet (if requested), so that the devices clocked by the output of
     *  PLL are not clocked until the PLL is stable.
     */
    cs461x_pokeBA0(card, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
    cs461x_pokeBA0(card, BA0_PLLM, 0x3a);
    cs461x_pokeBA0(card, BA0_CLKCR2, CLKCR2_PDIVS_8);

    /*
     *  Power up the PLL.
     */
    cs461x_pokeBA0(card, BA0_CLKCR1, CLKCR1_PLLP);

    /*
         *  Wait until the PLL has stabilized.
     */
    mdelay(5 * cs_laptop_wait);        /* Again 1 should be enough ?? */

    /*
     *  Turn on clocking of the core so that we can setup the serial ports.
     */
    tmp = cs461x_peekBA0(card, BA0_CLKCR1) | CLKCR1_SWCE;
    cs461x_pokeBA0(card, BA0_CLKCR1, tmp);

    /*
     *  Fill the serial port FIFOs with silence.
     */
    cs461x_clear_serial_FIFOs(card,CS_TYPE_DAC | CS_TYPE_ADC);

    /*
     *  Set the serial port FIFO pointer to the first sample in the FIFO.
     */
    /* cs461x_pokeBA0(card, BA0_SERBSP, 0); */

    /*
     *  Write the serial port configuration to the part.  The master
     *  enable bit is not set until all other values have been written.
     */
    cs461x_pokeBA0(card, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
    cs461x_pokeBA0(card, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
    cs461x_pokeBA0(card, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);


    mdelay(5 * cs_laptop_wait);        /* Shouldnt be needed ?? */
    
/*
* If we are resuming under 2.2.x then we can not schedule a timeout.
* so, just spin the CPU.
*/
    if(card->pm.flags & CS46XX_PM_IDLE)
    {
    /*
     * Wait for the card ready signal from the AC97 card.
     */
        end_time = jiffies + 3 * (HZ >> 2);
        do {
        /*
         *  Read the AC97 status register to see if we've seen a CODEC READY
         *  signal from the AC97 card.
         */
            if (cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_CRDY)
                break;
            current->state = TASK_UNINTERRUPTIBLE;
            schedule_timeout(1);
        } while (time_before(jiffies, end_time));
    }
    else
    {
        for (count = 0; count < 100; count++) {
        // First, we want to wait for a short time.
            udelay(25 * cs_laptop_wait);

            if (cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_CRDY)
                break;
        }
    }

    /*
     *  Make sure CODEC is READY.
     */
    if (!(cs461x_peekBA0(card, BA0_ACSTS) & ACSTS_CRDY)) {
        CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_WARNING  
            "cs46xx: create - never read card ready from AC'97\n"));
        CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_WARNING  
            "cs46xx: probably not a bug, try using the CS4232 driver,\n"));
        CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_WARNING  
            "cs46xx: or turn off any automatic Power Management support in the BIOS.\n"));
        return -EIO;
    }

    /*
     *  Assert the vaid frame signal so that we can start sending commands
     *  to the AC97 card.
     */
    cs461x_pokeBA0(card, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);

    if(card->pm.flags & CS46XX_PM_IDLE)
    {
    /*
     *  Wait until we've sampled input slots 3 and 4 as valid, meaning that
     *  the card is pumping ADC data across the AC-link.
     */
        end_time = jiffies + 3 * (HZ >> 2);
        do {
            /*
             *  Read the input slot valid register and see if input slots 3 and
             *  4 are valid yet.
             */
            if ((cs461x_peekBA0(card, BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
                break;
            current->state = TASK_UNINTERRUPTIBLE;
            schedule_timeout(1);
        } while (time_before(jiffies, end_time));
    }
    else
    {
        for (count = 0; count < 100; count++) {
        // First, we want to wait for a short time.
            udelay(25 * cs_laptop_wait);

            if ((cs461x_peekBA0(card, BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
                break;
        }
    }
    /*
     *  Make sure input slots 3 and 4 are valid.  If not, then return
     *  an error.
     */
    if ((cs461x_peekBA0(card, BA0_ACISV) & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4)) {
        printk(KERN_WARNING "cs46xx: create - never read ISV3 & ISV4 from AC'97\n");
        return -EIO;
    }

    /*
     *  Now, assert valid frame and the slot 3 and 4 valid bits.  This will
     *  commense the transfer of digital audio data to the AC97 card.
     */
    cs461x_pokeBA0(card, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);

    /*
     *  Turn off the Processor by turning off the software clock enable flag in 
     *  the clock control register.
     */
    /* tmp = cs461x_peekBA0(card, BA0_CLKCR1) & ~CLKCR1_SWCE; */
    /* cs461x_pokeBA0(card, BA0_CLKCR1, tmp); */

    /*
         *  Reset the processor.
         */
    cs461x_reset(card);

    /*
         *  Download the image to the processor.
     */
    
    cs461x_download_image(card);

    /*
         *  Stop playback DMA.
     */
    tmp = cs461x_peek(card, BA1_PCTL);
    card->pctl = tmp & 0xffff0000;
    cs461x_poke(card, BA1_PCTL, tmp & 0x0000ffff);

    /*
         *  Stop capture DMA.
     */
    tmp = cs461x_peek(card, BA1_CCTL);
    card->cctl = tmp & 0x0000ffff;
    cs461x_poke(card, BA1_CCTL, tmp & 0xffff0000);

    /* initialize AC97 codec and register /dev/mixer */
    if(card->pm.flags & CS46XX_PM_IDLE)
    {
        if (cs_ac97_init(card) <= 0)
        {
            CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
                "cs46xx: cs_ac97_init() failure\n") );
            return -EIO;
        }
    }
    else
    {
        cs46xx_ac97_resume(card);
    }
    
    cs461x_proc_start(card);

    /*
     *  Enable interrupts on the part.
     */
    cs461x_pokeBA0(card, BA0_HICR, HICR_IEV | HICR_CHGM);

    tmp = cs461x_peek(card, BA1_PFIE);
    tmp &= ~0x0000f03f;
    cs461x_poke(card, BA1_PFIE, tmp);    /* playback interrupt enable */

    tmp = cs461x_peek(card, BA1_CIE);
    tmp &= ~0x0000003f;
    tmp |=  0x00000001;
    cs461x_poke(card, BA1_CIE, tmp);    /* capture interrupt enable */    

    /*
     *  If IDLE then Power down the part.  We will power components up 
     *  when we need them.  
     */
    if(card->pm.flags & CS46XX_PM_IDLE)
    {
        if(!cs_powerdown)
        {
            if( (tmp = cs46xx_powerup(card, CS_POWER_DAC | CS_POWER_ADC |
                    CS_POWER_MIXVON )) )
            {
                CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
                    "cs46xx: cs461x_powerup() failure (0x%x)\n",tmp) );
                return -EIO;
            }
        }
        else
        {
            if( (tmp = cs461x_powerdown(card, CS_POWER_DAC | CS_POWER_ADC |
                    CS_POWER_MIXVON, CS_FALSE )) )
            {
                CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
                    "cs46xx: cs461x_powerdown() failure (0x%x)\n",tmp) );
                return -EIO;
            }
        }
    }
    CS_DBGOUT(CS_FUNCTION | CS_INIT, 2, printk(KERN_INFO 
        "cs46xx: cs_hardware_init()- 0\n"));
    return 0;
}

/* install the driver, we do not allocate hardware channel nor DMA buffer now, they are defered 
   until "ACCESS" time (in prog_dmabuf called by open/read/write/ioctl/mmap) */
   
/*
 *    Card subid table
 */
 
struct cs_card_type
{
    u16 vendor;
    u16 id;
    char *name;
    void (*amp)(struct cs_card *, int);
    void (*amp_init)(struct cs_card *);
    void (*active)(struct cs_card *, int);
};

static struct cs_card_type cards[]={
    {0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL},
    {0x5053, 0x3357, "Voyetra", amp_voyetra, NULL, NULL},
    {0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL},
    {0x14AF, 0x0050, "Hercules Game Theatre XP", amp_hercules, NULL, NULL},
    {0x1681, 0x0050, "Hercules Game Theatre XP", amp_hercules, NULL, NULL},
    {0x1681, 0x0051, "Hercules Game Theatre XP", amp_hercules, NULL, NULL},
    {0x1681, 0x0052, "Hercules Game Theatre XP", amp_hercules, NULL, NULL},
    {0x1681, 0x0053, "Hercules Game Theatre XP", amp_hercules, NULL, NULL},
    {0x1681, 0x0054, "Hercules Game Theatre XP", amp_hercules, NULL, NULL},
    {0x1681, 0xa010, "Hercules Fortissimo II", amp_none, NULL, NULL},
    
    /* Not sure if the 570 needs the clkrun hack */
    {PCI_VENDOR_ID_IBM, 0x0132, "Thinkpad 570", amp_none, NULL, clkrun_hack},
    {PCI_VENDOR_ID_IBM, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack},
    {PCI_VENDOR_ID_IBM, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL},
    {0, 0, "Card without SSID set", NULL, NULL, NULL },
    {0, 0, NULL, NULL, NULL}
};

MODULE_AUTHOR("Alan Cox <alan@redhat.com>, Jaroslav Kysela, <pcaudio@crystal.cirrus.com>");
MODULE_DESCRIPTION("Crystal SoundFusion Audio Support");
MODULE_LICENSE("GPL");


static const char cs46xx_banner[] = KERN_INFO "Crystal 4280/46xx + AC97 Audio, version " CS46XX_MAJOR_VERSION "." CS46XX_MINOR_VERSION "." CS46XX_ARCH ", " __TIME__ " " __DATE__ "\n";
static const char fndmsg[] = KERN_INFO "cs46xx: Found %d audio device(s).\n";

static int __devinit cs46xx_probe(struct pci_dev *pci_dev,
                  const struct pci_device_id *pciid)
{
    struct pm_dev *pmdev;
    int i,j;
    u16 ss_card, ss_vendor;
    struct cs_card *card;
    dma_addr_t dma_mask;
    struct cs_card_type *cp = &cards[0];

    CS_DBGOUT(CS_FUNCTION | CS_INIT, 2,
          printk(KERN_INFO "cs46xx: probe()+\n"));

    dma_mask = 0xffffffff;    /* this enables playback and recording */
    if (pci_enable_device(pci_dev)) {
        CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_ERR
             "cs46xx: pci_enable_device() failed\n"));
        return -1;
    }
    if (!RSRCISMEMORYREGION(pci_dev, 0) ||
        !RSRCISMEMORYREGION(pci_dev, 1)) {
        CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
             "cs46xx: probe()- Memory region not assigned\n"));
        return -1;
    }
    if (pci_dev->irq == 0) {
        CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
             "cs46xx: probe() IRQ not assigned\n"));
        return -1;
    }
    if (!pci_dma_supported(pci_dev, 0xffffffff)) {
        CS_DBGOUT(CS_ERROR, 1, printk(KERN_ERR
              "cs46xx: probe() architecture does not support 32bit PCI busmaster DMA\n"));
        return -1;
    }
    pci_read_config_word(pci_dev, PCI_SUBSYSTEM_VENDOR_ID, &ss_vendor);
    pci_read_config_word(pci_dev, PCI_SUBSYSTEM_ID, &ss_card);

    if ((card = kmalloc(sizeof(struct cs_card), GFP_KERNEL)) == NULL) {
        printk(KERN_ERR "cs46xx: out of memory\n");
        return -ENOMEM;
    }
    memset(card, 0, sizeof(*card));
    card->ba0_addr = RSRCADDRESS(pci_dev, 0);
    card->ba1_addr = RSRCADDRESS(pci_dev, 1);
    card->pci_dev = pci_dev;
    card->irq = pci_dev->irq;
    card->magic = CS_CARD_MAGIC;
    spin_lock_init(&card->lock);

    pci_set_master(pci_dev);

    printk(cs46xx_banner);
    printk(KERN_INFO "cs46xx: Card found at 0x%08lx and 0x%08lx, IRQ %d\n",
           card->ba0_addr, card->ba1_addr, card->irq);

    card->alloc_pcm_channel = cs_alloc_pcm_channel;
    card->alloc_rec_pcm_channel = cs_alloc_rec_pcm_channel;
    card->free_pcm_channel = cs_free_pcm_channel;
    card->amplifier_ctrl = amp_none;
    card->active_ctrl = amp_none;

    while (cp->name)
    {
        if(cp->vendor == ss_vendor && cp->id == ss_card)
        {
            card->amplifier_ctrl = cp->amp;
            if(cp->active)
                card->active_ctrl = cp->active;
            if(cp->amp_init)
                card->amp_init = cp->amp_init;
            break;
        }
        cp++;
    }
    if (cp->name==NULL)
    {
        printk(KERN_INFO "cs46xx: Unknown card (%04X:%04X) at 0x%08lx/0x%08lx, IRQ %d\n",
            ss_vendor, ss_card, card->ba0_addr, card->ba1_addr,  card->irq);
    }
    else
    {
        printk(KERN_INFO "cs46xx: %s (%04X:%04X) at 0x%08lx/0x%08lx, IRQ %d\n",
            cp->name, ss_vendor, ss_card, card->ba0_addr, card->ba1_addr, card->irq);
    }
    
    if (card->amplifier_ctrl==NULL)
    {
        card->amplifier_ctrl = amp_none;
        card->active_ctrl = clkrun_hack;
    }        

    if (external_amp == 1)
    {
        printk(KERN_INFO "cs46xx: Crystal EAPD support forced on.\n");
        card->amplifier_ctrl = amp_voyetra;
    }

    if (thinkpad == 1)
    {
        printk(KERN_INFO "cs46xx: Activating CLKRUN hack for Thinkpad.\n");
        card->active_ctrl = clkrun_hack;
    }
/*
* The thinkpads don't work well without runtime updating on their kernel 
* delay values (or any laptop with variable CPU speeds really).
* so, just to be safe set the init delay to 2100.  Eliminates
* failures on T21 Thinkpads.  remove this code when the udelay
* and mdelay kernel code is replaced by a pm timer, or the delays
* work well for battery and/or AC power both.
*/
    if(card->active_ctrl == clkrun_hack)
    {
        initdelay = 2100;
        cs_laptop_wait = 5;
    }
    if((card->active_ctrl == clkrun_hack) && !(powerdown == 1))
    {
/*
* for some currently unknown reason, powering down the DAC and ADC component
* blocks on thinkpads causes some funky behavior... distoorrrtion and ac97 
* codec access problems.  probably the serial clock becomes unsynced. 
* added code to sync the chips back up, but only helped about 70% the time.
*/
        cs_powerdown = 0;
    }
    if(powerdown == 0)
        cs_powerdown = 0;
    card->active_ctrl(card, 1);

    /* claim our iospace and irq */
    
    card->ba0 = ioremap_nocache(card->ba0_addr, CS461X_BA0_SIZE);
    card->ba1.name.data0 = ioremap_nocache(card->ba1_addr + BA1_SP_DMEM0, CS461X_BA1_DATA0_SIZE);
    card->ba1.name.data1 = ioremap_nocache(card->ba1_addr + BA1_SP_DMEM1, CS461X_BA1_DATA1_SIZE);
    card->ba1.name.pmem = ioremap_nocache(card->ba1_addr + BA1_SP_PMEM, CS461X_BA1_PRG_SIZE);
    card->ba1.name.reg = ioremap_nocache(card->ba1_addr + BA1_SP_REG, CS461X_BA1_REG_SIZE);
    
    CS_DBGOUT(CS_INIT, 4, printk(KERN_INFO 
        "cs46xx: card=0x%x card->ba0=0x%.08x\n",(unsigned)card,(unsigned)card->ba0) );
    CS_DBGOUT(CS_INIT, 4, printk(KERN_INFO 
        "cs46xx: card->ba1=0x%.08x 0x%.08x 0x%.08x 0x%.08x\n",
            (unsigned)card->ba1.name.data0,
            (unsigned)card->ba1.name.data1,
            (unsigned)card->ba1.name.pmem,
            (unsigned)card->ba1.name.reg) );

    if(card->ba0 == 0 || card->ba1.name.data0 == 0 ||
        card->ba1.name.data1 == 0 || card->ba1.name.pmem == 0 ||
        card->ba1.name.reg == 0)
        goto fail2;
        
    if (request_irq(card->irq, &cs_interrupt, SA_SHIRQ, "cs46xx", card)) {
        printk(KERN_ERR "cs46xx: unable to allocate irq %d\n", card->irq);
        goto fail2;
    }
    /* register /dev/dsp */
    if ((card->dev_audio = register_sound_dsp(&cs461x_fops, -1)) < 0) {
        printk(KERN_ERR "cs46xx: unable to register dsp\n");
        goto fail;
    }

        /* register /dev/midi */
        if((card->dev_midi = register_sound_midi(&cs_midi_fops, -1)) < 0)
                printk(KERN_ERR "cs46xx: unable to register midi\n");
                
    card->pm.flags |= CS46XX_PM_IDLE;
    for(i=0;i<5;i++)
    {
        if (cs_hardware_init(card) != 0)
        {
            CS_DBGOUT(CS_ERROR, 4, printk(
                "cs46xx: ERROR in cs_hardware_init()... retrying\n"));
            for (j = 0; j < NR_AC97; j++)
                if (card->ac97_codec[j] != NULL) {
                    unregister_sound_mixer(card->ac97_codec[j]->dev_mixer);
                    kfree (card->ac97_codec[j]);
                }
            mdelay(10 * cs_laptop_wait);
            continue;
        }
        break;
    }
    if(i>=4)
    {
        CS_DBGOUT(CS_PM | CS_ERROR, 1, printk(
            "cs46xx: cs46xx_probe()- cs_hardware_init() failed, retried %d times.\n",i));
                unregister_sound_dsp(card->dev_audio);
                if(card->dev_midi)
                        unregister_sound_midi(card->dev_midi);
                goto fail;
    }

        init_waitqueue_head(&card->midi.open_wait);
        init_MUTEX(&card->midi.open_sem);
        init_waitqueue_head(&card->midi.iwait);
        init_waitqueue_head(&card->midi.owait);
        cs461x_pokeBA0(card, BA0_MIDCR, MIDCR_MRST);   
        cs461x_pokeBA0(card, BA0_MIDCR, 0);   

    /* 
    * Check if we have to init the amplifier, but probably already done
    * since the CD logic in the ac97 init code will turn on the ext amp.
    */
    if(cp->amp_init)
        cp->amp_init(card);
        card->active_ctrl(card, -1);

    PCI_SET_DRIVER_DATA(pci_dev, card);
    PCI_SET_DMA_MASK(pci_dev, dma_mask);
    list_add(&card->list, &cs46xx_devs);

    pmdev = cs_pm_register(PM_PCI_DEV, PM_PCI_ID(pci_dev), cs46xx_pm_callback);
    if (pmdev)
    {
        CS_DBGOUT(CS_INIT | CS_PM, 4, printk(KERN_INFO
             "cs46xx: probe() pm_register() succeeded (0x%x).\n",
                (unsigned)pmdev));
        pmdev->data = card;
    }
    else
    {
        CS_DBGOUT(CS_INIT | CS_PM | CS_ERROR, 2, printk(KERN_INFO
             "cs46xx: probe() pm_register() failed (0x%x).\n",
                (unsigned)pmdev));
        card->pm.flags |= CS46XX_PM_NOT_REGISTERED;
    }

    CS_DBGOUT(CS_PM, 9, printk(KERN_INFO "cs46xx: pm.flags=0x%x card=0x%x\n",
        (unsigned)card->pm.flags,(unsigned)card));

    CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
        "cs46xx: probe()- device allocated successfully\n"));
        return 0;

fail:
    free_irq(card->irq, card);
fail2:
    if(card->ba0)
        iounmap(card->ba0);
    if(card->ba1.name.data0)
        iounmap(card->ba1.name.data0);
    if(card->ba1.name.data1)
        iounmap(card->ba1.name.data1);
    if(card->ba1.name.pmem)
        iounmap(card->ba1.name.pmem);
    if(card->ba1.name.reg)
        iounmap(card->ba1.name.reg);
    kfree(card);
    CS_DBGOUT(CS_INIT | CS_ERROR, 1, printk(KERN_INFO
        "cs46xx: probe()- no device allocated\n"));
    return -ENODEV;
} // probe_cs46xx

// --------------------------------------------------------------------- 

static void __devinit cs46xx_remove(struct pci_dev *pci_dev)
{
    struct cs_card *card = PCI_GET_DRIVER_DATA(pci_dev);
    int i;
    unsigned int tmp;
    
    CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
         "cs46xx: cs46xx_remove()+\n"));

    card->active_ctrl(card,1);
    
    tmp = cs461x_peek(card, BA1_PFIE);
    tmp &= ~0x0000f03f;
    tmp |=  0x00000010;
    cs461x_poke(card, BA1_PFIE, tmp);    /* playback interrupt disable */

    tmp = cs461x_peek(card, BA1_CIE);
    tmp &= ~0x0000003f;
    tmp |=  0x00000011;
    cs461x_poke(card, BA1_CIE, tmp);    /* capture interrupt disable */

    /*
         *  Stop playback DMA.
     */
    tmp = cs461x_peek(card, BA1_PCTL);
    cs461x_poke(card, BA1_PCTL, tmp & 0x0000ffff);

    /*
         *  Stop capture DMA.
     */
    tmp = cs461x_peek(card, BA1_CCTL);
    cs461x_poke(card, BA1_CCTL, tmp & 0xffff0000);

    /*
         *  Reset the processor.
         */
    cs461x_reset(card);

    cs461x_proc_stop(card);

    /*
     *  Power down the DAC and ADC.  We will power them up (if) when we need
     *  them.
     */
    if( (tmp = cs461x_powerdown(card, CS_POWER_DAC | CS_POWER_ADC |
            CS_POWER_MIXVON, CS_TRUE )) )
    {
        CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk(KERN_INFO 
            "cs46xx: cs461x_powerdown() failure (0x%x)\n",tmp) );
    }

    /*
     *  Power down the PLL.
     */
    cs461x_pokeBA0(card, BA0_CLKCR1, 0);

    /*
     *  Turn off the Processor by turning off the software clock enable flag in 
     *  the clock control register.
     */
    tmp = cs461x_peekBA0(card, BA0_CLKCR1) & ~CLKCR1_SWCE;
    cs461x_pokeBA0(card, BA0_CLKCR1, tmp);

    card->active_ctrl(card,-1);

    /* free hardware resources */
    free_irq(card->irq, card);
    iounmap(card->ba0);
    iounmap(card->ba1.name.data0);
    iounmap(card->ba1.name.data1);
    iounmap(card->ba1.name.pmem);
    iounmap(card->ba1.name.reg);
    
    /* unregister audio devices */
    for (i = 0; i < NR_AC97; i++)
        if (card->ac97_codec[i] != NULL) {
            unregister_sound_mixer(card->ac97_codec[i]->dev_mixer);
            kfree (card->ac97_codec[i]);
        }
    unregister_sound_dsp(card->dev_audio);
        if(card->dev_midi)
                unregister_sound_midi(card->dev_midi);
    list_del(&card->list);
    kfree(card);
    PCI_SET_DRIVER_DATA(pci_dev,NULL);

    CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
         "cs46xx: cs46xx_remove()-: remove successful\n"));
}

enum {
    CS46XX_4610 = 0,
    CS46XX_4612,      /* same as 4630 */
    CS46XX_4615,      /* same as 4624 */
};

static struct pci_device_id cs46xx_pci_tbl[] __devinitdata = {
    
    {PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CIRRUS_4610, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CS46XX_4610},
    {PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CIRRUS_4612, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CS46XX_4612},
    {PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CIRRUS_4615, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CS46XX_4615},
    {0,}
};

MODULE_DEVICE_TABLE(pci, cs46xx_pci_tbl);

struct pci_driver cs46xx_pci_driver = {
    name:"cs46xx",
    id_table:cs46xx_pci_tbl,
    probe:cs46xx_probe,
    remove:cs46xx_remove,
    suspend:CS46XX_SUSPEND_TBL,
    resume:CS46XX_RESUME_TBL,
};

int __init cs46xx_init_module(void)
{
    int rtn = 0;
    CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO 
        "cs46xx: cs46xx_init_module()+ \n"));
    if (!pci_present()) {    /* No PCI bus in this machine! */
        CS_DBGOUT(CS_INIT | CS_FUNCTION, 2, printk(KERN_INFO
            "cs46xx: cs46xx_init_module()- no pci bus found\n"));
        return -ENODEV;
    }
    rtn = pci_module_init(&cs46xx_pci_driver);

    if(rtn == -ENODEV)
    {
        CS_DBGOUT(CS_ERROR | CS_INIT, 1, printk( 
            "cs46xx: Unable to detect valid cs46xx device\n"));
    }

    CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
          printk(KERN_INFO "cs46xx: cs46xx_init_module()- (%d)\n",rtn));
    return rtn;
}

void __exit cs46xx_cleanup_module(void)
{
    pci_unregister_driver(&cs46xx_pci_driver);
    cs_pm_unregister_all(cs46xx_pm_callback);
    CS_DBGOUT(CS_INIT | CS_FUNCTION, 2,
          printk(KERN_INFO "cs46xx: cleanup_cs46xx() finished\n"));
}

module_init(cs46xx_init_module);
module_exit(cs46xx_cleanup_module);

int cs46xx_pm_callback(struct pm_dev *dev, pm_request_t rqst, void *data)
{
    struct cs_card *card;

    CS_DBGOUT(CS_PM, 2, printk(KERN_INFO 
        "cs46xx: cs46xx_pm_callback dev=0x%x rqst=0x%x card=%d\n",
            (unsigned)dev,(unsigned)rqst,(unsigned)data));
    card = (struct cs_card *) dev->data;
    if (card) {
        switch(rqst) {
            case PM_SUSPEND:
                CS_DBGOUT(CS_PM, 2, printk(KERN_INFO
                    "cs46xx: PM suspend request\n"));
                if(cs46xx_suspend(card, 0))
                {
                    CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
                    "cs46xx: PM suspend request refused\n"));
                    return 1; 
                }
                break;
            case PM_RESUME:
                CS_DBGOUT(CS_PM, 2, printk(KERN_INFO
                    "cs46xx: PM resume request\n"));
                if(cs46xx_resume(card))
                {
                    CS_DBGOUT(CS_ERROR, 2, printk(KERN_INFO
                    "cs46xx: PM resume request refused\n"));
                    return 1;
                }
                break;
        }
    }

    return 0;
}

#if CS46XX_ACPI_SUPPORT
static int cs46xx_suspend_tbl(struct pci_dev *pcidev, u32 state)
{
    struct cs_card *s = PCI_GET_DRIVER_DATA(pcidev);
    CS_DBGOUT(CS_PM | CS_FUNCTION, 2, 
        printk(KERN_INFO "cs46xx: cs46xx_suspend_tbl request\n"));
    cs46xx_suspend(s, 0);
    return 0;
}

static int cs46xx_resume_tbl(struct pci_dev *pcidev)
{
    struct cs_card *s = PCI_GET_DRIVER_DATA(pcidev);
    CS_DBGOUT(CS_PM | CS_FUNCTION, 2, 
        printk(KERN_INFO "cs46xx: cs46xx_resume_tbl request\n"));
    cs46xx_resume(s);
    return 0;
}
#endif

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0347 ]--