Viewing file: sunbmac.c (32.94 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: sunbmac.c,v 1.28 2001/10/21 06:35:29 davem Exp $ * sunbmac.c: Driver for Sparc BigMAC 100baseT ethernet adapters. * * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com) */
#include <linux/module.h>
#include <linux/kernel.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/init.h> #include <asm/system.h> #include <asm/bitops.h> #include <asm/io.h> #include <asm/dma.h> #include <linux/errno.h> #include <asm/byteorder.h>
#include <asm/idprom.h> #include <asm/sbus.h> #include <asm/openprom.h> #include <asm/oplib.h> #include <asm/auxio.h> #include <asm/pgtable.h>
#include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h>
#include "sunbmac.h"
static char version[] __initdata = "sunbmac.c:v1.9 11/Sep/99 David S. Miller (davem@redhat.com)\n";
#undef DEBUG_PROBE #undef DEBUG_TX #undef DEBUG_IRQ
#ifdef DEBUG_PROBE #define DP(x) printk x #else #define DP(x) #endif
#ifdef DEBUG_TX #define DTX(x) printk x #else #define DTX(x) #endif
#ifdef DEBUG_IRQ #define DIRQ(x) printk x #else #define DIRQ(x) #endif
static struct bigmac *root_bigmac_dev;
#define DEFAULT_JAMSIZE 4 /* Toe jam */
#define QEC_RESET_TRIES 200
static int qec_global_reset(unsigned long gregs) { int tries = QEC_RESET_TRIES;
sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL); while (--tries) { if (sbus_readl(gregs + GLOB_CTRL) & GLOB_CTRL_RESET) { udelay(20); continue; } break; } if (tries) return 0; printk(KERN_ERR "BigMAC: Cannot reset the QEC.\n"); return -1; }
static void qec_init(struct bigmac *bp) { unsigned long gregs = bp->gregs; struct sbus_dev *qec_sdev = bp->qec_sdev; u8 bsizes = bp->bigmac_bursts; u32 regval;
/* 64byte bursts do not work at the moment, do * not even try to enable them. -DaveM */ if (bsizes & DMA_BURST32) regval = GLOB_CTRL_B32; else regval = GLOB_CTRL_B16; sbus_writel(regval | GLOB_CTRL_BMODE, gregs + GLOB_CTRL); sbus_writel(GLOB_PSIZE_2048, gregs + GLOB_PSIZE);
/* All of memsize is given to bigmac. */ sbus_writel(qec_sdev->reg_addrs[1].reg_size, gregs + GLOB_MSIZE);
/* Half to the transmitter, half to the receiver. */ sbus_writel(qec_sdev->reg_addrs[1].reg_size >> 1, gregs + GLOB_TSIZE); sbus_writel(qec_sdev->reg_addrs[1].reg_size >> 1, gregs + GLOB_RSIZE); }
#define TX_RESET_TRIES 32 #define RX_RESET_TRIES 32
static void bigmac_tx_reset(unsigned long bregs) { int tries = TX_RESET_TRIES;
sbus_writel(0, bregs + BMAC_TXCFG);
/* The fifo threshold bit is read-only and does * not clear. -DaveM */ while ((sbus_readl(bregs + BMAC_TXCFG) & ~(BIGMAC_TXCFG_FIFO)) != 0 && --tries != 0) udelay(20);
if (!tries) { printk(KERN_ERR "BIGMAC: Transmitter will not reset.\n"); printk(KERN_ERR "BIGMAC: tx_cfg is %08x\n", sbus_readl(bregs + BMAC_TXCFG)); } }
static void bigmac_rx_reset(unsigned long bregs) { int tries = RX_RESET_TRIES;
sbus_writel(0, bregs + BMAC_RXCFG); while (sbus_readl(bregs + BMAC_RXCFG) && --tries) udelay(20);
if (!tries) { printk(KERN_ERR "BIGMAC: Receiver will not reset.\n"); printk(KERN_ERR "BIGMAC: rx_cfg is %08x\n", sbus_readl(bregs + BMAC_RXCFG)); } }
/* Reset the transmitter and receiver. */ static void bigmac_stop(struct bigmac *bp) { bigmac_tx_reset(bp->bregs); bigmac_rx_reset(bp->bregs); }
static void bigmac_get_counters(struct bigmac *bp, unsigned long bregs) { struct net_device_stats *stats = &bp->enet_stats;
stats->rx_crc_errors += sbus_readl(bregs + BMAC_RCRCECTR); sbus_writel(0, bregs + BMAC_RCRCECTR);
stats->rx_frame_errors += sbus_readl(bregs + BMAC_UNALECTR); sbus_writel(0, bregs + BMAC_UNALECTR);
stats->rx_length_errors += sbus_readl(bregs + BMAC_GLECTR); sbus_writel(0, bregs + BMAC_GLECTR);
stats->tx_aborted_errors += sbus_readl(bregs + BMAC_EXCTR);
stats->collisions += (sbus_readl(bregs + BMAC_EXCTR) + sbus_readl(bregs + BMAC_LTCTR)); sbus_writel(0, bregs + BMAC_EXCTR); sbus_writel(0, bregs + BMAC_LTCTR); }
static void bigmac_clean_rings(struct bigmac *bp) { int i;
for (i = 0; i < RX_RING_SIZE; i++) { if (bp->rx_skbs[i] != NULL) { dev_kfree_skb_any(bp->rx_skbs[i]); bp->rx_skbs[i] = NULL; } }
for (i = 0; i < TX_RING_SIZE; i++) { if (bp->tx_skbs[i] != NULL) { dev_kfree_skb_any(bp->tx_skbs[i]); bp->tx_skbs[i] = NULL; } } }
static void bigmac_init_rings(struct bigmac *bp, int from_irq) { struct bmac_init_block *bb = bp->bmac_block; struct net_device *dev = bp->dev; int i, gfp_flags = GFP_KERNEL;
if (from_irq || in_interrupt()) gfp_flags = GFP_ATOMIC;
bp->rx_new = bp->rx_old = bp->tx_new = bp->tx_old = 0;
/* Free any skippy bufs left around in the rings. */ bigmac_clean_rings(bp);
/* Now get new skbufs for the receive ring. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb;
skb = big_mac_alloc_skb(RX_BUF_ALLOC_SIZE, gfp_flags); if (!skb) continue;
bp->rx_skbs[i] = skb; skb->dev = dev;
/* Because we reserve afterwards. */ skb_put(skb, ETH_FRAME_LEN); skb_reserve(skb, 34);
bb->be_rxd[i].rx_addr = sbus_map_single(bp->bigmac_sdev, skb->data, RX_BUF_ALLOC_SIZE - 34, SBUS_DMA_FROMDEVICE); bb->be_rxd[i].rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH)); }
for (i = 0; i < TX_RING_SIZE; i++) bb->be_txd[i].tx_flags = bb->be_txd[i].tx_addr = 0; }
#define MGMT_CLKON (MGMT_PAL_INT_MDIO|MGMT_PAL_EXT_MDIO|MGMT_PAL_OENAB|MGMT_PAL_DCLOCK) #define MGMT_CLKOFF (MGMT_PAL_INT_MDIO|MGMT_PAL_EXT_MDIO|MGMT_PAL_OENAB)
static void idle_transceiver(unsigned long tregs) { int i = 20;
while (i--) { sbus_writel(MGMT_CLKOFF, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(MGMT_CLKON, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } }
static void write_tcvr_bit(struct bigmac *bp, unsigned long tregs, int bit) { if (bp->tcvr_type == internal) { bit = (bit & 1) << 3; sbus_writel(bit | (MGMT_PAL_OENAB | MGMT_PAL_EXT_MDIO), tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(bit | MGMT_PAL_OENAB | MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else if (bp->tcvr_type == external) { bit = (bit & 1) << 2; sbus_writel(bit | MGMT_PAL_INT_MDIO | MGMT_PAL_OENAB, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(bit | MGMT_PAL_INT_MDIO | MGMT_PAL_OENAB | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else { printk(KERN_ERR "write_tcvr_bit: No transceiver type known!\n"); } }
static int read_tcvr_bit(struct bigmac *bp, unsigned long tregs) { int retval = 0;
if (bp->tcvr_type == internal) { sbus_writel(MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_INT_MDIO) >> 3; } else if (bp->tcvr_type == external) { sbus_writel(MGMT_PAL_INT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_EXT_MDIO) >> 2; } else { printk(KERN_ERR "read_tcvr_bit: No transceiver type known!\n"); } return retval; }
static int read_tcvr_bit2(struct bigmac *bp, unsigned long tregs) { int retval = 0;
if (bp->tcvr_type == internal) { sbus_writel(MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_INT_MDIO) >> 3; sbus_writel(MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else if (bp->tcvr_type == external) { sbus_writel(MGMT_PAL_INT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_EXT_MDIO) >> 2; sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); } else { printk(KERN_ERR "read_tcvr_bit2: No transceiver type known!\n"); } return retval; }
static void put_tcvr_byte(struct bigmac *bp, unsigned long tregs, unsigned int byte) { int shift = 4;
do { write_tcvr_bit(bp, tregs, ((byte >> shift) & 1)); shift -= 1; } while (shift >= 0); }
static void bigmac_tcvr_write(struct bigmac *bp, unsigned long tregs, int reg, unsigned short val) { int shift;
reg &= 0xff; val &= 0xffff; switch(bp->tcvr_type) { case internal: case external: break;
default: printk(KERN_ERR "bigmac_tcvr_read: Whoops, no known transceiver type.\n"); return; };
idle_transceiver(tregs); write_tcvr_bit(bp, tregs, 0); write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 0); write_tcvr_bit(bp, tregs, 1);
put_tcvr_byte(bp, tregs, ((bp->tcvr_type == internal) ? BIGMAC_PHY_INTERNAL : BIGMAC_PHY_EXTERNAL));
put_tcvr_byte(bp, tregs, reg);
write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 0);
shift = 15; do { write_tcvr_bit(bp, tregs, (val >> shift) & 1); shift -= 1; } while (shift >= 0); }
static unsigned short bigmac_tcvr_read(struct bigmac *bp, unsigned long tregs, int reg) { unsigned short retval = 0;
reg &= 0xff; switch(bp->tcvr_type) { case internal: case external: break;
default: printk(KERN_ERR "bigmac_tcvr_read: Whoops, no known transceiver type.\n"); return 0xffff; };
idle_transceiver(tregs); write_tcvr_bit(bp, tregs, 0); write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 1); write_tcvr_bit(bp, tregs, 0);
put_tcvr_byte(bp, tregs, ((bp->tcvr_type == internal) ? BIGMAC_PHY_INTERNAL : BIGMAC_PHY_EXTERNAL));
put_tcvr_byte(bp, tregs, reg);
if (bp->tcvr_type == external) { int shift = 15;
(void) read_tcvr_bit2(bp, tregs); (void) read_tcvr_bit2(bp, tregs);
do { int tmp;
tmp = read_tcvr_bit2(bp, tregs); retval |= ((tmp & 1) << shift); shift -= 1; } while (shift >= 0);
(void) read_tcvr_bit2(bp, tregs); (void) read_tcvr_bit2(bp, tregs); (void) read_tcvr_bit2(bp, tregs); } else { int shift = 15;
(void) read_tcvr_bit(bp, tregs); (void) read_tcvr_bit(bp, tregs);
do { int tmp;
tmp = read_tcvr_bit(bp, tregs); retval |= ((tmp & 1) << shift); shift -= 1; } while (shift >= 0);
(void) read_tcvr_bit(bp, tregs); (void) read_tcvr_bit(bp, tregs); (void) read_tcvr_bit(bp, tregs); } return retval; }
static void bigmac_tcvr_init(struct bigmac *bp) { unsigned long tregs = bp->tregs; u32 mpal;
idle_transceiver(tregs); sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL);
/* Only the bit for the present transceiver (internal or * external) will stick, set them both and see what stays. */ sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL); sbus_readl(tregs + TCVR_MPAL); udelay(20);
mpal = sbus_readl(tregs + TCVR_MPAL); if (mpal & MGMT_PAL_EXT_MDIO) { bp->tcvr_type = external; sbus_writel(~(TCVR_PAL_EXTLBACK | TCVR_PAL_MSENSE | TCVR_PAL_LTENABLE), tregs + TCVR_TPAL); sbus_readl(tregs + TCVR_TPAL); } else if (mpal & MGMT_PAL_INT_MDIO) { bp->tcvr_type = internal; sbus_writel(~(TCVR_PAL_SERIAL | TCVR_PAL_EXTLBACK | TCVR_PAL_MSENSE | TCVR_PAL_LTENABLE), tregs + TCVR_TPAL); sbus_readl(tregs + TCVR_TPAL); } else { printk(KERN_ERR "BIGMAC: AIEEE, neither internal nor " "external MDIO available!\n"); printk(KERN_ERR "BIGMAC: mgmt_pal[%08x] tcvr_pal[%08x]\n", sbus_readl(tregs + TCVR_MPAL), sbus_readl(tregs + TCVR_TPAL)); } }
static int bigmac_init(struct bigmac *, int);
static int try_next_permutation(struct bigmac *bp, unsigned long tregs) { if (bp->sw_bmcr & BMCR_SPEED100) { int timeout;
/* Reset the PHY. */ bp->sw_bmcr = (BMCR_ISOLATE | BMCR_PDOWN | BMCR_LOOPBACK); bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr); bp->sw_bmcr = (BMCR_RESET); bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
timeout = 64; while (--timeout) { bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR); if ((bp->sw_bmcr & BMCR_RESET) == 0) break; udelay(20); } if (timeout == 0) printk(KERN_ERR "%s: PHY reset failed.\n", bp->dev->name);
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
/* Now we try 10baseT. */ bp->sw_bmcr &= ~(BMCR_SPEED100); bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr); return 0; }
/* We've tried them all. */ return -1; }
static void bigmac_timer(unsigned long data) { struct bigmac *bp = (struct bigmac *) data; unsigned long tregs = bp->tregs; int restart_timer = 0;
bp->timer_ticks++; if (bp->timer_state == ltrywait) { bp->sw_bmsr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMSR); bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR); if (bp->sw_bmsr & BMSR_LSTATUS) { printk(KERN_INFO "%s: Link is now up at %s.\n", bp->dev->name, (bp->sw_bmcr & BMCR_SPEED100) ? "100baseT" : "10baseT"); bp->timer_state = asleep; restart_timer = 0; } else { if (bp->timer_ticks >= 4) { int ret;
ret = try_next_permutation(bp, tregs); if (ret == -1) { printk(KERN_ERR "%s: Link down, cable problem?\n", bp->dev->name); ret = bigmac_init(bp, 0); if (ret) { printk(KERN_ERR "%s: Error, cannot re-init the " "BigMAC.\n", bp->dev->name); } return; } bp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } } else { /* Can't happens.... */ printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n", bp->dev->name); restart_timer = 0; bp->timer_ticks = 0; bp->timer_state = asleep; /* foo on you */ }
if (restart_timer != 0) { bp->bigmac_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ add_timer(&bp->bigmac_timer); } }
/* Well, really we just force the chip into 100baseT then * 10baseT, each time checking for a link status. */ static void bigmac_begin_auto_negotiation(struct bigmac *bp) { unsigned long tregs = bp->tregs; int timeout;
/* Grab new software copies of PHY registers. */ bp->sw_bmsr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMSR); bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
/* Reset the PHY. */ bp->sw_bmcr = (BMCR_ISOLATE | BMCR_PDOWN | BMCR_LOOPBACK); bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr); bp->sw_bmcr = (BMCR_RESET); bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
timeout = 64; while (--timeout) { bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR); if ((bp->sw_bmcr & BMCR_RESET) == 0) break; udelay(20); } if (timeout == 0) printk(KERN_ERR "%s: PHY reset failed.\n", bp->dev->name);
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
/* First we try 100baseT. */ bp->sw_bmcr |= BMCR_SPEED100; bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
bp->timer_state = ltrywait; bp->timer_ticks = 0; bp->bigmac_timer.expires = jiffies + (12 * HZ) / 10; bp->bigmac_timer.data = (unsigned long) bp; bp->bigmac_timer.function = &bigmac_timer; add_timer(&bp->bigmac_timer); }
static int bigmac_init(struct bigmac *bp, int from_irq) { unsigned long gregs = bp->gregs; unsigned long cregs = bp->creg; unsigned long bregs = bp->bregs; unsigned char *e = &bp->dev->dev_addr[0];
/* Latch current counters into statistics. */ bigmac_get_counters(bp, bregs);
/* Reset QEC. */ qec_global_reset(gregs);
/* Init QEC. */ qec_init(bp);
/* Alloc and reset the tx/rx descriptor chains. */ bigmac_init_rings(bp, from_irq);
/* Initialize the PHY. */ bigmac_tcvr_init(bp);
/* Stop transmitter and receiver. */ bigmac_stop(bp);
/* Set hardware ethernet address. */ sbus_writel(((e[4] << 8) | e[5]), bregs + BMAC_MACADDR2); sbus_writel(((e[2] << 8) | e[3]), bregs + BMAC_MACADDR1); sbus_writel(((e[0] << 8) | e[1]), bregs + BMAC_MACADDR0);
/* Clear the hash table until mc upload occurs. */ sbus_writel(0, bregs + BMAC_HTABLE3); sbus_writel(0, bregs + BMAC_HTABLE2); sbus_writel(0, bregs + BMAC_HTABLE1); sbus_writel(0, bregs + BMAC_HTABLE0);
/* Enable Big Mac hash table filter. */ sbus_writel(BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_FIFO, bregs + BMAC_RXCFG); udelay(20);
/* Ok, configure the Big Mac transmitter. */ sbus_writel(BIGMAC_TXCFG_FIFO, bregs + BMAC_TXCFG);
/* The HME docs recommend to use the 10LSB of our MAC here. */ sbus_writel(((e[5] | e[4] << 8) & 0x3ff), bregs + BMAC_RSEED);
/* Enable the output drivers no matter what. */ sbus_writel(BIGMAC_XCFG_ODENABLE | BIGMAC_XCFG_RESV, bregs + BMAC_XIFCFG);
/* Tell the QEC where the ring descriptors are. */ sbus_writel(bp->bblock_dvma + bib_offset(be_rxd, 0), cregs + CREG_RXDS); sbus_writel(bp->bblock_dvma + bib_offset(be_txd, 0), cregs + CREG_TXDS);
/* Setup the FIFO pointers into QEC local memory. */ sbus_writel(0, cregs + CREG_RXRBUFPTR); sbus_writel(0, cregs + CREG_RXWBUFPTR); sbus_writel(sbus_readl(gregs + GLOB_RSIZE), cregs + CREG_TXRBUFPTR); sbus_writel(sbus_readl(gregs + GLOB_RSIZE), cregs + CREG_TXWBUFPTR);
/* Tell bigmac what interrupts we don't want to hear about. */ sbus_writel(BIGMAC_IMASK_GOTFRAME | BIGMAC_IMASK_SENTFRAME, bregs + BMAC_IMASK);
/* Enable the various other irq's. */ sbus_writel(0, cregs + CREG_RIMASK); sbus_writel(0, cregs + CREG_TIMASK); sbus_writel(0, cregs + CREG_QMASK); sbus_writel(0, cregs + CREG_BMASK);
/* Set jam size to a reasonable default. */ sbus_writel(DEFAULT_JAMSIZE, bregs + BMAC_JSIZE);
/* Clear collision counter. */ sbus_writel(0, cregs + CREG_CCNT);
/* Enable transmitter and receiver. */ sbus_writel(sbus_readl(bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE, bregs + BMAC_TXCFG); sbus_writel(sbus_readl(bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE, bregs + BMAC_RXCFG);
/* Ok, start detecting link speed/duplex. */ bigmac_begin_auto_negotiation(bp);
/* Success. */ return 0; }
/* Error interrupts get sent here. */ static void bigmac_is_medium_rare(struct bigmac *bp, u32 qec_status, u32 bmac_status) { printk(KERN_ERR "bigmac_is_medium_rare: "); if (qec_status & (GLOB_STAT_ER | GLOB_STAT_BM)) { if (qec_status & GLOB_STAT_ER) printk("QEC_ERROR, "); if (qec_status & GLOB_STAT_BM) printk("QEC_BMAC_ERROR, "); } if (bmac_status & CREG_STAT_ERRORS) { if (bmac_status & CREG_STAT_BERROR) printk("BMAC_ERROR, "); if (bmac_status & CREG_STAT_TXDERROR) printk("TXD_ERROR, "); if (bmac_status & CREG_STAT_TXLERR) printk("TX_LATE_ERROR, "); if (bmac_status & CREG_STAT_TXPERR) printk("TX_PARITY_ERROR, "); if (bmac_status & CREG_STAT_TXSERR) printk("TX_SBUS_ERROR, ");
if (bmac_status & CREG_STAT_RXDROP) printk("RX_DROP_ERROR, ");
if (bmac_status & CREG_STAT_RXSMALL) printk("RX_SMALL_ERROR, "); if (bmac_status & CREG_STAT_RXLERR) printk("RX_LATE_ERROR, "); if (bmac_status & CREG_STAT_RXPERR) printk("RX_PARITY_ERROR, "); if (bmac_status & CREG_STAT_RXSERR) printk("RX_SBUS_ERROR, "); }
printk(" RESET\n"); bigmac_init(bp, 1); }
/* BigMAC transmit complete service routines. */ static void bigmac_tx(struct bigmac *bp) { struct be_txd *txbase = &bp->bmac_block->be_txd[0]; struct net_device *dev = bp->dev; int elem;
spin_lock(&bp->lock);
elem = bp->tx_old; DTX(("bigmac_tx: tx_old[%d] ", elem)); while (elem != bp->tx_new) { struct sk_buff *skb; struct be_txd *this = &txbase[elem];
DTX(("this(%p) [flags(%08x)addr(%08x)]", this, this->tx_flags, this->tx_addr));
if (this->tx_flags & TXD_OWN) break; skb = bp->tx_skbs[elem]; bp->enet_stats.tx_packets++; bp->enet_stats.tx_bytes += skb->len; sbus_unmap_single(bp->bigmac_sdev, this->tx_addr, skb->len, SBUS_DMA_TODEVICE);
DTX(("skb(%p) ", skb)); bp->tx_skbs[elem] = NULL; dev_kfree_skb_irq(skb);
elem = NEXT_TX(elem); } DTX((" DONE, tx_old=%d\n", elem)); bp->tx_old = elem;
if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL(bp) > 0) netif_wake_queue(bp->dev);
spin_unlock(&bp->lock); }
/* BigMAC receive complete service routines. */ static void bigmac_rx(struct bigmac *bp) { struct be_rxd *rxbase = &bp->bmac_block->be_rxd[0]; struct be_rxd *this; int elem = bp->rx_new, drops = 0; u32 flags;
this = &rxbase[elem]; while (!((flags = this->rx_flags) & RXD_OWN)) { struct sk_buff *skb; int len = (flags & RXD_LENGTH); /* FCS not included */
/* Check for errors. */ if (len < ETH_ZLEN) { bp->enet_stats.rx_errors++; bp->enet_stats.rx_length_errors++;
drop_it: /* Return it to the BigMAC. */ bp->enet_stats.rx_dropped++; this->rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH)); goto next; } skb = bp->rx_skbs[elem]; if (len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb;
/* Now refill the entry, if we can. */ new_skb = big_mac_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (new_skb == NULL) { drops++; goto drop_it; } sbus_unmap_single(bp->bigmac_sdev, this->rx_addr, RX_BUF_ALLOC_SIZE - 34, SBUS_DMA_FROMDEVICE); bp->rx_skbs[elem] = new_skb; new_skb->dev = bp->dev; skb_put(new_skb, ETH_FRAME_LEN); skb_reserve(new_skb, 34); this->rx_addr = sbus_map_single(bp->bigmac_sdev, new_skb->data, RX_BUF_ALLOC_SIZE - 34, SBUS_DMA_FROMDEVICE); this->rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH));
/* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
if (copy_skb == NULL) { drops++; goto drop_it; } copy_skb->dev = bp->dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); sbus_dma_sync_single(bp->bigmac_sdev, this->rx_addr, len, SBUS_DMA_FROMDEVICE); eth_copy_and_sum(copy_skb, (unsigned char *)skb->data, len, 0);
/* Reuse original ring buffer. */ this->rx_flags = (RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH));
skb = copy_skb; }
/* No checksums done by the BigMAC ;-( */ skb->protocol = eth_type_trans(skb, bp->dev); netif_rx(skb); bp->dev->last_rx = jiffies; bp->enet_stats.rx_packets++; bp->enet_stats.rx_bytes += len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; } bp->rx_new = elem; if (drops) printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", bp->dev->name); }
static void bigmac_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct bigmac *bp = (struct bigmac *) dev_id; u32 qec_status, bmac_status;
DIRQ(("bigmac_interrupt: "));
/* Latch status registers now. */ bmac_status = sbus_readl(bp->creg + CREG_STAT); qec_status = sbus_readl(bp->gregs + GLOB_STAT);
DIRQ(("qec_status=%08x bmac_status=%08x\n", qec_status, bmac_status)); if ((qec_status & (GLOB_STAT_ER | GLOB_STAT_BM)) || (bmac_status & CREG_STAT_ERRORS)) bigmac_is_medium_rare(bp, qec_status, bmac_status);
if (bmac_status & CREG_STAT_TXIRQ) bigmac_tx(bp);
if (bmac_status & CREG_STAT_RXIRQ) bigmac_rx(bp); }
static int bigmac_open(struct net_device *dev) { struct bigmac *bp = (struct bigmac *) dev->priv; int ret;
ret = request_irq(dev->irq, &bigmac_interrupt, SA_SHIRQ, dev->name, bp); if (ret) { printk(KERN_ERR "BIGMAC: Can't order irq %d to go.\n", dev->irq); return ret; } init_timer(&bp->bigmac_timer); ret = bigmac_init(bp, 0); if (ret) free_irq(dev->irq, bp); return ret; }
static int bigmac_close(struct net_device *dev) { struct bigmac *bp = (struct bigmac *) dev->priv;
del_timer(&bp->bigmac_timer); bp->timer_state = asleep; bp->timer_ticks = 0;
bigmac_stop(bp); bigmac_clean_rings(bp); free_irq(dev->irq, bp); return 0; }
static void bigmac_tx_timeout(struct net_device *dev) { struct bigmac *bp = (struct bigmac *) dev->priv;
bigmac_init(bp, 0); netif_wake_queue(dev); }
/* Put a packet on the wire. */ static int bigmac_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct bigmac *bp = (struct bigmac *) dev->priv; int len, entry; u32 mapping;
len = skb->len; mapping = sbus_map_single(bp->bigmac_sdev, skb->data, len, SBUS_DMA_TODEVICE);
/* Avoid a race... */ spin_lock_irq(&bp->lock); entry = bp->tx_new; DTX(("bigmac_start_xmit: len(%d) entry(%d)\n", len, entry)); bp->bmac_block->be_txd[entry].tx_flags = TXD_UPDATE; bp->tx_skbs[entry] = skb; bp->bmac_block->be_txd[entry].tx_addr = mapping; bp->bmac_block->be_txd[entry].tx_flags = (TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH)); bp->tx_new = NEXT_TX(entry); if (TX_BUFFS_AVAIL(bp) <= 0) netif_stop_queue(dev); spin_unlock_irq(&bp->lock);
/* Get it going. */ sbus_writel(CREG_CTRL_TWAKEUP, bp->creg + CREG_CTRL);
dev->trans_start = jiffies;
return 0; }
static struct net_device_stats *bigmac_get_stats(struct net_device *dev) { struct bigmac *bp = (struct bigmac *) dev->priv;
bigmac_get_counters(bp, bp->bregs); return &bp->enet_stats; }
#define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */ #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */
static void bigmac_set_multicast(struct net_device *dev) { struct bigmac *bp = (struct bigmac *) dev->priv; unsigned long bregs = bp->bregs; struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i, j, bit, byte; u32 tmp, crc, poly = CRC_POLYNOMIAL_LE;
/* Disable the receiver. The bit self-clears when * the operation is complete. */ tmp = sbus_readl(bregs + BMAC_RXCFG); tmp &= ~(BIGMAC_RXCFG_ENABLE); sbus_writel(tmp, bregs + BMAC_RXCFG); while ((sbus_readl(bregs + BMAC_RXCFG) & BIGMAC_RXCFG_ENABLE) != 0) udelay(20);
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { sbus_writel(0xffff, bregs + BMAC_HTABLE0); sbus_writel(0xffff, bregs + BMAC_HTABLE1); sbus_writel(0xffff, bregs + BMAC_HTABLE2); sbus_writel(0xffff, bregs + BMAC_HTABLE3); } else if (dev->flags & IFF_PROMISC) { tmp = sbus_readl(bregs + BMAC_RXCFG); tmp |= BIGMAC_RXCFG_PMISC; sbus_writel(tmp, bregs + BMAC_RXCFG); } else { u16 hash_table[4];
for (i = 0; i < 4; i++) hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next;
if (!(*addrs & 1)) continue;
crc = 0xffffffffU; for (byte = 0; byte < 6; byte++) { for (bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) { int test;
test = ((bit ^ crc) & 0x01); crc >>= 1; if (test) crc = crc ^ poly; } } crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } sbus_writel(hash_table[0], bregs + BMAC_HTABLE0); sbus_writel(hash_table[1], bregs + BMAC_HTABLE1); sbus_writel(hash_table[2], bregs + BMAC_HTABLE2); sbus_writel(hash_table[3], bregs + BMAC_HTABLE3); }
/* Re-enable the receiver. */ tmp = sbus_readl(bregs + BMAC_RXCFG); tmp |= BIGMAC_RXCFG_ENABLE; sbus_writel(tmp, bregs + BMAC_RXCFG); }
static int __init bigmac_ether_init(struct net_device *dev, struct sbus_dev *qec_sdev) { static int version_printed; struct bigmac *bp; u8 bsizes, bsizes_more; int i;
/* Get a new device struct for this interface. */ dev = init_etherdev(NULL, sizeof(struct bigmac)); if (!dev) return -ENOMEM; SET_MODULE_OWNER(dev);
if (version_printed++ == 0) printk(KERN_INFO "%s", version);
if (!dev) return -ENOMEM;
/* Report what we have found to the user. */ printk(KERN_INFO "%s: BigMAC 100baseT Ethernet ", dev->name); dev->base_addr = (long) qec_sdev; for (i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i] = idprom->id_ethaddr[i], i == 5 ? ' ' : ':'); printk("\n");
/* Setup softc, with backpointers to QEC and BigMAC SBUS device structs. */ bp = dev->priv; bp->qec_sdev = qec_sdev; bp->bigmac_sdev = qec_sdev->child;
spin_lock_init(&bp->lock);
/* Verify the registers we expect, are actually there. */ if ((bp->bigmac_sdev->num_registers != 3) || (bp->qec_sdev->num_registers != 2)) { printk(KERN_ERR "BIGMAC: Device does not have 2 and 3 regs, it has %d and %d.\n", bp->qec_sdev->num_registers, bp->bigmac_sdev->num_registers); printk(KERN_ERR "BIGMAC: Would you like that for here or to go?\n"); goto fail_and_cleanup; }
/* Map in QEC global control registers. */ bp->gregs = sbus_ioremap(&bp->qec_sdev->resource[0], 0, GLOB_REG_SIZE, "BigMAC QEC GLobal Regs"); if (!bp->gregs) { printk(KERN_ERR "BIGMAC: Cannot map QEC global registers.\n"); goto fail_and_cleanup; }
/* Make sure QEC is in BigMAC mode. */ if ((sbus_readl(bp->gregs + GLOB_CTRL) & 0xf0000000) != GLOB_CTRL_BMODE) { printk(KERN_ERR "BigMAC: AIEEE, QEC is not in BigMAC mode!\n"); goto fail_and_cleanup; }
/* Reset the QEC. */ if (qec_global_reset(bp->gregs)) goto fail_and_cleanup;
/* Get supported SBUS burst sizes. */ bsizes = prom_getintdefault(bp->qec_sdev->prom_node, "burst-sizes", 0xff);
bsizes_more = prom_getintdefault(bp->qec_sdev->bus->prom_node, "burst-sizes", 0xff);
bsizes &= 0xff; if (bsizes_more != 0xff) bsizes &= bsizes_more; if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 || (bsizes & DMA_BURST32) == 0) bsizes = (DMA_BURST32 - 1); bp->bigmac_bursts = bsizes;
/* Perform QEC initialization. */ qec_init(bp);
/* Map in the BigMAC channel registers. */ bp->creg = sbus_ioremap(&bp->bigmac_sdev->resource[0], 0, CREG_REG_SIZE, "BigMAC QEC Channel Regs"); if (!bp->creg) { printk(KERN_ERR "BIGMAC: Cannot map QEC channel registers.\n"); goto fail_and_cleanup; }
/* Map in the BigMAC control registers. */ bp->bregs = sbus_ioremap(&bp->bigmac_sdev->resource[1], 0, BMAC_REG_SIZE, "BigMAC Primary Regs"); if (!bp->bregs) { printk(KERN_ERR "BIGMAC: Cannot map BigMAC primary registers.\n"); goto fail_and_cleanup; }
/* Map in the BigMAC transceiver registers, this is how you poke at * the BigMAC's PHY. */ bp->tregs = sbus_ioremap(&bp->bigmac_sdev->resource[2], 0, TCVR_REG_SIZE, "BigMAC Transceiver Regs"); if (!bp->tregs) { printk(KERN_ERR "BIGMAC: Cannot map BigMAC transceiver registers.\n"); goto fail_and_cleanup; }
/* Stop the BigMAC. */ bigmac_stop(bp);
/* Allocate transmit/receive descriptor DVMA block. */ bp->bmac_block = sbus_alloc_consistent(bp->bigmac_sdev, PAGE_SIZE, &bp->bblock_dvma); if (bp->bmac_block == NULL || bp->bblock_dvma == 0) { printk(KERN_ERR "BIGMAC: Cannot allocate consistent DMA.\n"); goto fail_and_cleanup; }
/* Get the board revision of this BigMAC. */ bp->board_rev = prom_getintdefault(bp->bigmac_sdev->prom_node, "board-version", 1);
/* Init auto-negotiation timer state. */ init_timer(&bp->bigmac_timer); bp->timer_state = asleep; bp->timer_ticks = 0;
/* Backlink to generic net device struct. */ bp->dev = dev;
/* Set links to our BigMAC open and close routines. */ dev->open = &bigmac_open; dev->stop = &bigmac_close; dev->hard_start_xmit = &bigmac_start_xmit;
/* Set links to BigMAC statistic and multi-cast loading code. */ dev->get_stats = &bigmac_get_stats; dev->set_multicast_list = &bigmac_set_multicast;
dev->tx_timeout = &bigmac_tx_timeout; dev->watchdog_timeo = 5*HZ;
/* Finish net device registration. */ dev->irq = bp->bigmac_sdev->irqs[0]; dev->dma = 0; ether_setup(dev);
/* Put us into the list of instances attached for later driver * exit. */ bp->next_module = root_bigmac_dev; root_bigmac_dev = bp;
return 0;
fail_and_cleanup: /* Something went wrong, undo whatever we did so far. */ /* Free register mappings if any. */ if (bp->gregs) sbus_iounmap(bp->gregs, GLOB_REG_SIZE); if (bp->creg) sbus_iounmap(bp->creg, CREG_REG_SIZE); if (bp->bregs) sbus_iounmap(bp->bregs, BMAC_REG_SIZE); if (bp->tregs) sbus_iounmap(bp->tregs, TCVR_REG_SIZE);
if (bp->bmac_block) sbus_free_consistent(bp->bigmac_sdev, PAGE_SIZE, bp->bmac_block, bp->bblock_dvma);
unregister_netdev(dev); kfree(dev); return -ENODEV; }
/* QEC can be the parent of either QuadEthernet or * a BigMAC. We want the latter. */ static int __init bigmac_match(struct sbus_dev *sdev) { struct sbus_dev *child = sdev->child;
if (strcmp(sdev->prom_name, "qec") != 0) return 0;
if (child == NULL) return 0;
if (strcmp(child->prom_name, "be") != 0) return 0;
return 1; }
static int __init bigmac_probe(void) { struct net_device *dev = NULL; struct sbus_bus *sbus; struct sbus_dev *sdev = 0; static int called; int cards = 0, v;
root_bigmac_dev = NULL;
if (called) return -ENODEV; called++;
for_each_sbus(sbus) { for_each_sbusdev(sdev, sbus) { if (cards) dev = NULL;
if (bigmac_match(sdev)) { cards++; if ((v = bigmac_ether_init(dev, sdev))) return v; } } } if (!cards) return -ENODEV; return 0; }
static void __exit bigmac_cleanup(void) { while (root_bigmac_dev) { struct bigmac *bp = root_bigmac_dev; struct bigmac *bp_nxt = root_bigmac_dev->next_module;
sbus_iounmap(bp->gregs, GLOB_REG_SIZE); sbus_iounmap(bp->creg, CREG_REG_SIZE); sbus_iounmap(bp->bregs, BMAC_REG_SIZE); sbus_iounmap(bp->tregs, TCVR_REG_SIZE); sbus_free_consistent(bp->bigmac_sdev, PAGE_SIZE, bp->bmac_block, bp->bblock_dvma);
unregister_netdev(bp->dev); kfree(bp->dev); root_bigmac_dev = bp_nxt; } }
module_init(bigmac_probe); module_exit(bigmac_cleanup); MODULE_LICENSE("GPL");
|