Viewing file: ns83820.c (42.64 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#define _VERSION "0.15" /* ns83820.c by Benjamin LaHaise <bcrl@redhat.com> with contributions. * * $Revision: 1.34.2.12 $ * * Copyright 2001 Benjamin LaHaise. * Copyright 2001 Red Hat. * * Mmmm, chocolate vanilla mocha... * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * ChangeLog * ========= * 20010414 0.1 - created * 20010622 0.2 - basic rx and tx. * 20010711 0.3 - added duplex and link state detection support. * 20010713 0.4 - zero copy, no hangs. * 0.5 - 64 bit dma support (davem will hate me for this) * - disable jumbo frames to avoid tx hangs * - work around tx deadlocks on my 1.02 card via * fiddling with TXCFG * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64 * 20010816 0.7 - misc cleanups * 20010826 0.8 - fix critical zero copy bugs * 0.9 - internal experiment * 20010827 0.10 - fix ia64 unaligned access. * 20010906 0.11 - accept all packets with checksum errors as * otherwise fragments get lost * - fix >> 32 bugs * 0.12 - add statistics counters * - add allmulti/promisc support * 20011009 0.13 - hotplug support, other smaller pci api cleanups * 20011204 0.13a - optical transceiver support added * by Michael Clark <michael@metaparadigm.com> * 20011205 0.13b - call register_netdev earlier in initialization * suppress duplicate link status messages * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik * 20011204 0.15 get ppc (big endian) working * * Driver Overview * =============== * * This driver was originally written for the National Semiconductor * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully * this code will turn out to be a) clean, b) correct, and c) fast. * With that in mind, I'm aiming to split the code up as much as * reasonably possible. At present there are X major sections that * break down into a) packet receive, b) packet transmit, c) link * management, d) initialization and configuration. Where possible, * these code paths are designed to run in parallel. * * This driver has been tested and found to work with the following * cards (in no particular order): * * Cameo SOHO-GA2000T SOHO-GA2500T * D-Link DGE-500T * PureData PDP8023Z-TG * SMC SMC9452TX SMC9462TX * Netgear GA621 * * Special thanks to SMC for providing hardware to test this driver on. * * Reports of success or failure would be greatly appreciated. */ //#define dprintk printk #define dprintk(x...) do { } while (0)
#include <linux/module.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/smp_lock.h> #include <linux/tqueue.h> #include <linux/init.h> #include <linux/ip.h> /* for iph */ #include <linux/in.h> /* for IPPROTO_... */ #include <linux/eeprom.h> #include <linux/compiler.h> #include <linux/ethtool.h> //#include <linux/skbrefill.h>
#include <asm/io.h> #include <asm/uaccess.h>
/* Dprintk is used for more interesting debug events */ #undef Dprintk #define Dprintk dprintk
#ifdef CONFIG_HIGHMEM64G #define USE_64BIT_ADDR "+" #elif defined(__ia64__) #define USE_64BIT_ADDR "+" #endif
/* Tell davem to fix the pci dma api. Grrr. */ /* stolen from acenic.c */ #if 0 //def CONFIG_HIGHMEM #if defined(CONFIG_X86) #define DMAADDR_OFFSET 0 #if defined(CONFIG_HIGHMEM64G) typedef u64 dmaaddr_high_t; #else typedef u32 dmaaddr_high_t; #endif #elif defined(CONFIG_PPC) #define DMAADDR_OFFSET PCI_DRAM_OFFSET typedef unsigned long dmaaddr_high_t; #endif
static inline dmaaddr_high_t pci_map_single_high(struct pci_dev *hwdev, struct page *page, int offset, size_t size, int dir) { u64 phys; phys = page - mem_map; phys <<= PAGE_SHIFT; phys += offset; phys += DMAADDR_OFFSET; return phys; } #else
typedef unsigned long dmaaddr_high_t;
static inline dmaaddr_high_t pci_map_single_high(struct pci_dev *hwdev, struct page *page, int offset, size_t size, int dir) { return pci_map_single(hwdev, page_address(page) + offset, size, dir); } #endif
#if defined(USE_64BIT_ADDR) #define VERSION _VERSION USE_64BIT_ADDR #else #define VERSION _VERSION #endif
/* tunables */ #define RX_BUF_SIZE 6144 /* 8192 */ #define NR_RX_DESC 256
#define NR_TX_DESC 256
/* register defines */ #define CFGCS 0x04
#define CR_TXE 0x00000001 #define CR_TXD 0x00000002 #define CR_RXE 0x00000004 #define CR_RXD 0x00000008 #define CR_TXR 0x00000010 #define CR_RXR 0x00000020 #define CR_SWI 0x00000080 #define CR_RST 0x00000100
#define PTSCR_EEBIST_EN 0x00000002 #define PTSCR_EELOAD_EN 0x00000004
#define ISR_TXDESC3 0x40000000 #define ISR_TXDESC2 0x20000000 #define ISR_TXDESC1 0x10000000 #define ISR_TXDESC0 0x08000000 #define ISR_RXDESC3 0x04000000 #define ISR_RXDESC2 0x02000000 #define ISR_RXDESC1 0x01000000 #define ISR_RXDESC0 0x00800000 #define ISR_TXRCMP 0x00400000 #define ISR_RXRCMP 0x00200000 #define ISR_DPERR 0x00100000 #define ISR_SSERR 0x00080000 #define ISR_RMABT 0x00040000 #define ISR_RTABT 0x00020000 #define ISR_RXSOVR 0x00010000 #define ISR_HIBINT 0x00008000 #define ISR_PHY 0x00004000 #define ISR_PME 0x00002000 #define ISR_SWI 0x00001000 #define ISR_MIB 0x00000800 #define ISR_TXURN 0x00000400 #define ISR_TXIDLE 0x00000200 #define ISR_TXERR 0x00000100 #define ISR_TXDESC 0x00000080 #define ISR_TXOK 0x00000040 #define ISR_RXORN 0x00000020 #define ISR_RXIDLE 0x00000010 #define ISR_RXEARLY 0x00000008 #define ISR_RXERR 0x00000004 #define ISR_RXDESC 0x00000002 #define ISR_RXOK 0x00000001
#define TXCFG_CSI 0x80000000 #define TXCFG_HBI 0x40000000 #define TXCFG_MLB 0x20000000 #define TXCFG_ATP 0x10000000 #define TXCFG_ECRETRY 0x00800000 #define TXCFG_BRST_DIS 0x00080000 #define TXCFG_MXDMA1024 0x00000000 #define TXCFG_MXDMA512 0x00700000 #define TXCFG_MXDMA256 0x00600000 #define TXCFG_MXDMA128 0x00500000 #define TXCFG_MXDMA64 0x00400000 #define TXCFG_MXDMA32 0x00300000 #define TXCFG_MXDMA16 0x00200000 #define TXCFG_MXDMA8 0x00100000
#define CFG_LNKSTS 0x80000000 #define CFG_SPDSTS 0x60000000 #define CFG_SPDSTS1 0x40000000 #define CFG_SPDSTS0 0x20000000 #define CFG_DUPSTS 0x10000000 #define CFG_TBI_EN 0x01000000 #define CFG_MODE_1000 0x00400000 #define CFG_AUTO_1000 0x00200000 #define CFG_PINT_CTL 0x001c0000 #define CFG_PINT_DUPSTS 0x00100000 #define CFG_PINT_LNKSTS 0x00080000 #define CFG_PINT_SPDSTS 0x00040000 #define CFG_TMRTEST 0x00020000 #define CFG_MRM_DIS 0x00010000 #define CFG_MWI_DIS 0x00008000 #define CFG_T64ADDR 0x00004000 #define CFG_PCI64_DET 0x00002000 #define CFG_DATA64_EN 0x00001000 #define CFG_M64ADDR 0x00000800 #define CFG_PHY_RST 0x00000400 #define CFG_PHY_DIS 0x00000200 #define CFG_EXTSTS_EN 0x00000100 #define CFG_REQALG 0x00000080 #define CFG_SB 0x00000040 #define CFG_POW 0x00000020 #define CFG_EXD 0x00000010 #define CFG_PESEL 0x00000008 #define CFG_BROM_DIS 0x00000004 #define CFG_EXT_125 0x00000002 #define CFG_BEM 0x00000001
#define EXTSTS_UDPPKT 0x00200000 #define EXTSTS_TCPPKT 0x00080000 #define EXTSTS_IPPKT 0x00020000
#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS)
#define MIBC_MIBS 0x00000008 #define MIBC_ACLR 0x00000004 #define MIBC_FRZ 0x00000002 #define MIBC_WRN 0x00000001
#define RXCFG_AEP 0x80000000 #define RXCFG_ARP 0x40000000 #define RXCFG_STRIPCRC 0x20000000 #define RXCFG_RX_FD 0x10000000 #define RXCFG_ALP 0x08000000 #define RXCFG_AIRL 0x04000000 #define RXCFG_MXDMA 0x00700000 #define RXCFG_MXDMA0 0x00100000 #define RXCFG_MXDMA64 0x00600000 #define RXCFG_DRTH 0x0000003e #define RXCFG_DRTH0 0x00000002
#define RFCR_RFEN 0x80000000 #define RFCR_AAB 0x40000000 #define RFCR_AAM 0x20000000 #define RFCR_AAU 0x10000000 #define RFCR_APM 0x08000000 #define RFCR_APAT 0x07800000 #define RFCR_APAT3 0x04000000 #define RFCR_APAT2 0x02000000 #define RFCR_APAT1 0x01000000 #define RFCR_APAT0 0x00800000 #define RFCR_AARP 0x00400000 #define RFCR_MHEN 0x00200000 #define RFCR_UHEN 0x00100000 #define RFCR_ULM 0x00080000
#define VRCR_RUDPE 0x00000080 #define VRCR_RTCPE 0x00000040 #define VRCR_RIPE 0x00000020 #define VRCR_IPEN 0x00000010 #define VRCR_DUTF 0x00000008 #define VRCR_DVTF 0x00000004 #define VRCR_VTREN 0x00000002 #define VRCR_VTDEN 0x00000001
#define VTCR_PPCHK 0x00000008 #define VTCR_GCHK 0x00000004 #define VTCR_VPPTI 0x00000002 #define VTCR_VGTI 0x00000001
#define CR 0x00 #define CFG 0x04 #define MEAR 0x08 #define PTSCR 0x0c #define ISR 0x10 #define IMR 0x14 #define IER 0x18 #define IHR 0x1c #define TXDP 0x20 #define TXDP_HI 0x24 #define TXCFG 0x28 #define GPIOR 0x2c #define RXDP 0x30 #define RXDP_HI 0x34 #define RXCFG 0x38 #define PQCR 0x3c #define WCSR 0x40 #define PCR 0x44 #define RFCR 0x48 #define RFDR 0x4c
#define SRR 0x58
#define VRCR 0xbc #define VTCR 0xc0 #define VDR 0xc4 #define CCSR 0xcc
#define TBICR 0xe0 #define TBISR 0xe4 #define TANAR 0xe8 #define TANLPAR 0xec #define TANER 0xf0 #define TESR 0xf4
#define TBICR_MR_AN_ENABLE 0x00001000 #define TBICR_MR_RESTART_AN 0x00000200
#define TBISR_MR_LINK_STATUS 0x00000020 #define TBISR_MR_AN_COMPLETE 0x00000004
#define TANAR_PS2 0x00000100 #define TANAR_PS1 0x00000080 #define TANAR_HALF_DUP 0x00000040 #define TANAR_FULL_DUP 0x00000020
#define GPIOR_GP5_OE 0x00000200 #define GPIOR_GP4_OE 0x00000100 #define GPIOR_GP3_OE 0x00000080 #define GPIOR_GP2_OE 0x00000040 #define GPIOR_GP1_OE 0x00000020 #define GPIOR_GP3_OUT 0x00000004 #define GPIOR_GP1_OUT 0x00000001
#define LINK_AUTONEGOTIATE 0x01 #define LINK_DOWN 0x02 #define LINK_UP 0x04
#define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
#define kick_rx(dev) do { \ dprintk("kick_rx: maybe kicking\n"); \ if (test_and_clear_bit(0, &dev->rx_info.idle)) { \ dprintk("actually kicking\n"); \ writel(dev->rx_info.phy_descs + (4 * DESC_SIZE * dev->rx_info.next_rx), dev->base + RXDP); \ if (dev->rx_info.next_rx == dev->rx_info.next_empty) \ printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n", dev->net_dev.name);\ __kick_rx(dev); \ } \ } while(0)
#ifdef USE_64BIT_ADDR typedef u64 hw_addr_t; #else typedef u32 hw_addr_t; #endif
#define HW_ADDR_LEN (sizeof(hw_addr_t))
#define LINK 0 #define BUFPTR (LINK + HW_ADDR_LEN/4) #define CMDSTS (BUFPTR + HW_ADDR_LEN/4) #define EXTSTS (CMDSTS + 4/4) #define DRV_NEXT (EXTSTS + 4/4)
#define CMDSTS_OWN 0x80000000 #define CMDSTS_MORE 0x40000000 #define CMDSTS_INTR 0x20000000 #define CMDSTS_ERR 0x10000000 #define CMDSTS_OK 0x08000000
#define CMDSTS_DEST_MASK 0x01800000 #define CMDSTS_DEST_SELF 0x00800000 #define CMDSTS_DEST_MULTI 0x01000000
#define DESC_SIZE 8 /* Should be cache line sized */
struct rx_info { spinlock_t lock; int up; long idle;
struct sk_buff *skbs[NR_RX_DESC];
unsigned next_rx, next_empty;
u32 *descs; dma_addr_t phy_descs; };
struct ns83820 { struct net_device net_dev; struct net_device_stats stats; u8 *base;
struct pci_dev *pci_dev;
struct rx_info rx_info;
unsigned ihr; struct tq_struct tq_refill;
/* protects everything below. irqsave when using. */ spinlock_t misc_lock;
u32 CFG_cache;
u32 MEAR_cache; u32 IMR_cache; struct eeprom ee;
unsigned linkstate;
spinlock_t tx_lock;
long tx_idle; u32 tx_done_idx; u32 tx_idx; volatile u32 tx_free_idx; /* idx of free desc chain */ u32 tx_intr_idx;
struct sk_buff *tx_skbs[NR_TX_DESC];
char pad[16] __attribute__((aligned(16))); u32 *tx_descs; dma_addr_t tx_phy_descs; };
//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC #define start_tx_okay(dev) \ (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > NR_TX_DESC/2)
/* Packet Receiver * * The hardware supports linked lists of receive descriptors for * which ownership is transfered back and forth by means of an * ownership bit. While the hardware does support the use of a * ring for receive descriptors, we only make use of a chain in * an attempt to reduce bus traffic under heavy load scenarios. * This will also make bugs a bit more obvious. The current code * only makes use of a single rx chain; I hope to implement * priority based rx for version 1.0. Goal: even under overload * conditions, still route realtime traffic with as low jitter as * possible. */ #ifdef USE_64BIT_ADDR static inline void build_rx_desc64(struct ns83820 *dev, u32 *desc, u64 link, u64 buf, u32 cmdsts, u32 extsts) { desc[0] = link; desc[1] = link >> 32; desc[2] = buf; desc[3] = buf >> 32; desc[5] = extsts; mb(); desc[4] = cmdsts; }
#define build_rx_desc build_rx_desc64 #else
static inline void build_rx_desc32(struct ns83820 *dev, u32 *desc, u32 link, u32 buf, u32 cmdsts, u32 extsts) { desc[0] = cpu_to_le32(link); desc[1] = cpu_to_le32(buf); desc[3] = cpu_to_le32(extsts); mb(); desc[2] = cpu_to_le32(cmdsts); }
#define build_rx_desc build_rx_desc32 #endif
#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC) static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb) { unsigned next_empty; u32 cmdsts; u32 *sg; hw_addr_t buf;
next_empty = dev->rx_info.next_empty;
/* don't overrun last rx marker */ if (nr_rx_empty(dev) <= 2) { kfree_skb(skb); return 1; }
#if 0 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n", dev->rx_info.next_empty, dev->rx_info.nr_used, dev->rx_info.next_rx ); #endif
sg = dev->rx_info.descs + (next_empty * DESC_SIZE); if (dev->rx_info.skbs[next_empty]) BUG(); dev->rx_info.skbs[next_empty] = skb;
dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC; cmdsts = RX_BUF_SIZE | CMDSTS_INTR; buf = pci_map_single(dev->pci_dev, skb->tail, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); build_rx_desc(dev, sg, 0, buf, cmdsts, 0); /* update link of previous rx */ if (next_empty != dev->rx_info.next_rx) dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
return 0; }
static int rx_refill(struct ns83820 *dev, int gfp) { unsigned i; long flags = 0;
dprintk("rx_refill(%p)\n", dev); if (gfp == GFP_ATOMIC) spin_lock_irqsave(&dev->rx_info.lock, flags); for (i=0; i<NR_RX_DESC; i++) { struct sk_buff *skb; long res; skb = __dev_alloc_skb(RX_BUF_SIZE+16, gfp); if (!skb) break;
res = (long)skb->tail & 0xf; res = 0x10 - res; res &= 0xf; skb_reserve(skb, res);
skb->dev = &dev->net_dev; if (gfp != GFP_ATOMIC) spin_lock_irqsave(&dev->rx_info.lock, flags); res = ns83820_add_rx_skb(dev, skb); if (gfp != GFP_ATOMIC) spin_unlock_irqrestore(&dev->rx_info.lock, flags); if (res) { i = 1; break; } } if (gfp == GFP_ATOMIC) spin_unlock_irqrestore(&dev->rx_info.lock, flags);
return i ? 0 : -ENOMEM; }
/* REFILL */ static inline void queue_refill(void *_dev) { struct ns83820 *dev = _dev;
rx_refill(dev, GFP_KERNEL); if (dev->rx_info.up) kick_rx(dev); }
static inline void clear_rx_desc(struct ns83820 *dev, unsigned i) { build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0); }
static void phy_intr(struct ns83820 *dev) { static char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" }; u32 cfg, new_cfg; u32 tbisr, tanar, tanlpar; int speed, fullduplex, newlinkstate;
cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
if (dev->CFG_cache & CFG_TBI_EN) {
/* we have an optical transceiver */ tbisr = readl(dev->base + TBISR); tanar = readl(dev->base + TANAR); tanlpar = readl(dev->base + TANLPAR); dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n", tbisr, tanar, tanlpar);
if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) && (tanar & TANAR_FULL_DUP)) ) {
/* both of us are full duplex */ writel(readl(dev->base + TXCFG) | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, dev->base + TXCFG); writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, dev->base + RXCFG); /* Light up full duplex LED */ writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, dev->base + GPIOR);
} else if(((tanlpar & TANAR_HALF_DUP) && (tanar & TANAR_HALF_DUP)) || ((tanlpar & TANAR_FULL_DUP) && (tanar & TANAR_HALF_DUP)) || ((tanlpar & TANAR_HALF_DUP) && (tanar & TANAR_FULL_DUP))) {
/* one or both of us are half duplex */ writel((readl(dev->base + TXCFG) & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP, dev->base + TXCFG); writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD, dev->base + RXCFG); /* Turn off full duplex LED */ writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT, dev->base + GPIOR); }
speed = 4; /* 1000F */
} else { /* we have a copper transceiver */ new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
if (cfg & CFG_SPDSTS1) new_cfg |= CFG_MODE_1000 | CFG_SB; else new_cfg &= ~CFG_MODE_1000 | CFG_SB;
if ((cfg & CFG_LNKSTS) && ((new_cfg ^ dev->CFG_cache) & CFG_MODE_1000)) { writel(new_cfg, dev->base + CFG); dev->CFG_cache = new_cfg; }
dev->CFG_cache &= ~CFG_SPDSTS; dev->CFG_cache |= cfg & CFG_SPDSTS;
speed = ((cfg / CFG_SPDSTS0) & 3); fullduplex = (cfg & CFG_DUPSTS); }
newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
if (newlinkstate & LINK_UP && dev->linkstate != newlinkstate) { netif_start_queue(&dev->net_dev); netif_wake_queue(&dev->net_dev); printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n", dev->net_dev.name, speeds[speed], fullduplex ? "full" : "half"); } else if (newlinkstate & LINK_DOWN && dev->linkstate != newlinkstate) { netif_stop_queue(&dev->net_dev); printk(KERN_INFO "%s: link now down.\n", dev->net_dev.name); }
dev->linkstate = newlinkstate; }
static int ns83820_setup_rx(struct ns83820 *dev) { unsigned i; int ret;
dprintk("ns83820_setup_rx(%p)\n", dev);
dev->rx_info.idle = 1; dev->rx_info.next_rx = 0; dev->rx_info.next_empty = 0;
for (i=0; i<NR_RX_DESC; i++) clear_rx_desc(dev, i);
writel(0, dev->base + RXDP_HI); writel(dev->rx_info.phy_descs, dev->base + RXDP);
ret = rx_refill(dev, GFP_KERNEL); if (!ret) { dprintk("starting receiver\n"); /* prevent the interrupt handler from stomping on us */ spin_lock_irq(&dev->rx_info.lock);
writel(0x0001, dev->base + CCSR); writel(0, dev->base + RFCR); writel(0x7fc00000, dev->base + RFCR); writel(0xffc00000, dev->base + RFCR);
dev->rx_info.up = 1;
phy_intr(dev);
/* Okay, let it rip */ spin_lock(&dev->misc_lock); dev->IMR_cache |= ISR_PHY; dev->IMR_cache |= ISR_RXRCMP; //dev->IMR_cache |= ISR_RXERR; //dev->IMR_cache |= ISR_RXOK; dev->IMR_cache |= ISR_RXORN; dev->IMR_cache |= ISR_RXSOVR; dev->IMR_cache |= ISR_RXDESC; dev->IMR_cache |= ISR_RXIDLE; dev->IMR_cache |= ISR_TXDESC; //dev->IMR_cache |= ISR_TXIDLE;
writel(dev->IMR_cache, dev->base + IMR); writel(1, dev->base + IER); spin_unlock(&dev->misc_lock);
kick_rx(dev);
spin_unlock_irq(&dev->rx_info.lock); } return ret; }
static void ns83820_cleanup_rx(struct ns83820 *dev) { unsigned i; long flags;
dprintk("ns83820_cleanup_rx(%p)\n", dev);
/* disable receive interrupts */ spin_lock_irqsave(&dev->misc_lock, flags); dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE); writel(dev->IMR_cache, dev->base + IMR); spin_unlock_irqrestore(&dev->misc_lock, flags);
/* synchronize with the interrupt handler and kill it */ dev->rx_info.up = 0; synchronize_irq();
/* touch the pci bus... */ readl(dev->base + IMR);
/* assumes the transmitter is already disabled and reset */ writel(0, dev->base + RXDP_HI); writel(0, dev->base + RXDP);
for (i=0; i<NR_RX_DESC; i++) { struct sk_buff *skb = dev->rx_info.skbs[i]; dev->rx_info.skbs[i] = NULL; clear_rx_desc(dev, i); if (skb) kfree_skb(skb); } }
/* rx_irq * */ static void FASTCALL(rx_irq(struct ns83820 *dev)); static void rx_irq(struct ns83820 *dev) { struct rx_info *info = &dev->rx_info; unsigned next_rx; u32 cmdsts, *desc; long flags; int nr = 0;
dprintk("rx_irq(%p)\n", dev); dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n", readl(dev->base + RXDP), (dev->rx_info.phy_descs), dev->rx_info.next_rx, (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)), dev->rx_info.next_empty, (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty)) );
spin_lock_irqsave(&info->lock, flags); if (!info->up) goto out;
dprintk("walking descs\n"); next_rx = info->next_rx; desc = info->descs + (DESC_SIZE * next_rx); while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[CMDSTS]))) && (cmdsts != CMDSTS_OWN)) { struct sk_buff *skb; u32 extsts = le32_to_cpu(desc[EXTSTS]); dmaaddr_high_t bufptr = le32_to_cpu(desc[BUFPTR]);
dprintk("cmdsts: %08x\n", cmdsts); dprintk("link: %08x\n", cpu_to_le32(desc[LINK])); dprintk("extsts: %08x\n", extsts);
skb = info->skbs[next_rx]; info->skbs[next_rx] = NULL; info->next_rx = (next_rx + 1) % NR_RX_DESC;
barrier(); clear_rx_desc(dev, next_rx);
pci_unmap_single(dev->pci_dev, bufptr, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); if (CMDSTS_OK & cmdsts) { #if 0 //ndef __i386__ struct sk_buff *tmp; #endif int len = cmdsts & 0xffff; if (!skb) BUG(); skb_put(skb, len); #if 0 //ndef __i386__ /* I hate the network stack sometimes */ tmp = __dev_alloc_skb(RX_BUF_SIZE+16, GFP_ATOMIC); if (!tmp) goto done; tmp->dev = &dev->net_dev; skb_reserve(tmp, 2); memcpy(skb_put(tmp, len), skb->data, len); kfree_skb(skb); skb = tmp; #endif if (cmdsts & CMDSTS_DEST_MULTI) dev->stats.multicast ++; dev->stats.rx_packets ++; dev->stats.rx_bytes += len; if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) { skb->ip_summed = CHECKSUM_UNNECESSARY; } else { skb->ip_summed = CHECKSUM_NONE; } skb->protocol = eth_type_trans(skb, &dev->net_dev); if (NET_RX_DROP == netif_rx(skb)) dev->stats.rx_dropped ++; #if 0 //ndef __i386__ done:; #endif } else { kfree_skb(skb); }
nr++; next_rx = info->next_rx; desc = info->descs + (DESC_SIZE * next_rx); } info->next_rx = next_rx;
out: if (0 && !nr) { Dprintk("dazed: cmdsts_f: %08x\n", cmdsts); }
spin_unlock_irqrestore(&info->lock, flags); }
/* Packet Transmit code */ static inline void kick_tx(struct ns83820 *dev) { dprintk("kick_tx(%p): tx_idle=%ld, tx_idx=%d free_idx=%d\n", dev, dev->tx_idle, dev->tx_idx, dev->tx_free_idx); writel(CR_TXE, dev->base + CR); }
/* no spinlock needed on the transmit irq path as the interrupt handler is serialized */ static void do_tx_done(struct ns83820 *dev) { u32 cmdsts, tx_done_idx, *desc;
dprintk("do_tx_done(%p)\n", dev); tx_done_idx = dev->tx_done_idx; desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[CMDSTS])); while ((tx_done_idx != dev->tx_free_idx) && !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[CMDSTS]))) ) { struct sk_buff *skb;
if (cmdsts & CMDSTS_ERR) dev->stats.tx_errors ++; if (cmdsts & CMDSTS_OK) dev->stats.tx_packets ++; if (cmdsts & CMDSTS_OK) dev->stats.tx_bytes += cmdsts & 0xffff;
dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", tx_done_idx, dev->tx_free_idx, cmdsts); skb = dev->tx_skbs[tx_done_idx]; dev->tx_skbs[tx_done_idx] = NULL; dprintk("done(%p)\n", skb); if (skb) { pci_unmap_single(dev->pci_dev, le32_to_cpu(desc[BUFPTR]), skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); }
tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC; dev->tx_done_idx = tx_done_idx; desc[CMDSTS] = cpu_to_le32(0); barrier(); desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); }
/* Allow network stack to resume queueing packets after we've * finished transmitting at least 1/4 of the packets in the queue. */ if (netif_queue_stopped(&dev->net_dev) && start_tx_okay(dev)) { dprintk("start_queue(%p)\n", dev); netif_start_queue(&dev->net_dev); netif_wake_queue(&dev->net_dev); } }
static void ns83820_cleanup_tx(struct ns83820 *dev) { unsigned i;
for (i=0; i<NR_TX_DESC; i++) { struct sk_buff *skb = dev->tx_skbs[i]; dev->tx_skbs[i] = NULL; if (skb) dev_kfree_skb(skb); }
memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4); set_bit(0, &dev->tx_idle); }
/* transmit routine. This code relies on the network layer serializing * its calls in, but will run happily in parallel with the interrupt * handler. This code currently has provisions for fragmenting tx buffers * while trying to track down a bug in either the zero copy code or * the tx fifo (hence the MAX_FRAG_LEN). */ #define MAX_FRAG_LEN 8192 /* disabled for now */ static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *_dev) { struct ns83820 *dev = (struct ns83820 *)_dev; u32 free_idx, cmdsts, extsts; int nr_free, nr_frags; unsigned tx_done_idx; dmaaddr_high_t buf; unsigned len; skb_frag_t *frag; int stopped = 0; int do_intr = 0; volatile u32 *first_desc;
dprintk("ns83820_hard_start_xmit\n");
nr_frags = skb_shinfo(skb)->nr_frags; again: if (__builtin_expect(dev->CFG_cache & CFG_LNKSTS, 0)) { netif_stop_queue(&dev->net_dev); if (__builtin_expect(dev->CFG_cache & CFG_LNKSTS, 0)) return 1; netif_start_queue(&dev->net_dev); }
free_idx = dev->tx_free_idx; tx_done_idx = dev->tx_done_idx; nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC; nr_free -= 1; if ((nr_free <= nr_frags) || (nr_free <= 8192 / MAX_FRAG_LEN)) { dprintk("stop_queue - not enough(%p)\n", dev); netif_stop_queue(&dev->net_dev);
/* Check again: we may have raced with a tx done irq */ if (dev->tx_done_idx != tx_done_idx) { dprintk("restart queue(%p)\n", dev); netif_start_queue(&dev->net_dev); goto again; } return 1; }
if (free_idx == dev->tx_intr_idx) { do_intr = 1; dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/2) % NR_TX_DESC; }
nr_free -= nr_frags; if (nr_free < 1) { dprintk("stop_queue - last entry(%p)\n", dev); netif_stop_queue(&dev->net_dev); stopped = 1; }
frag = skb_shinfo(skb)->frags; if (!nr_frags) frag = 0; extsts = 0; if (skb->ip_summed == CHECKSUM_HW) { extsts |= EXTSTS_IPPKT; if (IPPROTO_TCP == skb->nh.iph->protocol) extsts |= EXTSTS_TCPPKT; else if (IPPROTO_UDP == skb->nh.iph->protocol) extsts |= EXTSTS_UDPPKT; }
len = skb->len; if (nr_frags) len -= skb->data_len; buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
for (;;) { volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE); u32 residue = 0; #if 0 if (len > MAX_FRAG_LEN) { residue = len; /* align the start address of the next fragment */ len = MAX_FRAG_LEN; residue -= len; } #endif
dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len, (unsigned long long)buf); free_idx = (free_idx + 1) % NR_TX_DESC; desc[LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4)); desc[BUFPTR] = cpu_to_le32(buf); desc[EXTSTS] = cpu_to_le32(extsts);
cmdsts = ((nr_frags|residue) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0); cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN; cmdsts |= len; desc[CMDSTS] = cpu_to_le32(cmdsts);
if (residue) { buf += len; len = residue; continue; }
if (!nr_frags) break;
buf = pci_map_single_high(dev->pci_dev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); dprintk("frag: buf=%08Lx page=%08lx\n", (long long)buf, (long)(frag->page - mem_map)); len = frag->size; frag++; nr_frags--; } dprintk("done pkt\n"); dev->tx_skbs[free_idx] = skb; first_desc[CMDSTS] |= cpu_to_le32(CMDSTS_OWN); dev->tx_free_idx = free_idx; kick_tx(dev);
/* Check again: we may have raced with a tx done irq */ if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev)) netif_start_queue(&dev->net_dev);
return 0; }
static void ns83820_update_stats(struct ns83820 *dev) { u8 *base = dev->base;
dev->stats.rx_errors += readl(base + 0x60) & 0xffff; dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff; dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff; dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff; /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70); dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff; dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff; /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c); /*dev->stats.rx_pause_count += */ readl(base + 0x80); /*dev->stats.tx_pause_count += */ readl(base + 0x84); dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff; }
static struct net_device_stats *ns83820_get_stats(struct net_device *_dev) { struct ns83820 *dev = (void *)_dev;
/* somewhat overkill */ spin_lock_irq(&dev->misc_lock); ns83820_update_stats(dev); spin_unlock_irq(&dev->misc_lock);
return &dev->stats; }
static int ns83820_ethtool_ioctl (struct ns83820 *dev, void *useraddr) { u32 ethcmd;
if (copy_from_user(ðcmd, useraddr, sizeof (ethcmd))) return -EFAULT;
switch (ethcmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO }; strcpy(info.driver, "ns83820"); strcpy(info.version, VERSION); strcpy(info.bus_info, dev->pci_dev->slot_name); if (copy_to_user(useraddr, &info, sizeof (info))) return -EFAULT; return 0; }
/* get link status */ case ETHTOOL_GLINK: { struct ethtool_value edata = { ETHTOOL_GLINK }; u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
if (cfg & CFG_LNKSTS) edata.data = 1; else edata.data = 0; if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; }
default: break; }
return -EOPNOTSUPP; }
static int ns83820_ioctl(struct net_device *_dev, struct ifreq *rq, int cmd) { struct ns83820 *dev = _dev->priv;
switch(cmd) { case SIOCETHTOOL: return ns83820_ethtool_ioctl(dev, (void *) rq->ifr_data);
default: return -EOPNOTSUPP; } }
static void ns83820_irq(int foo, void *data, struct pt_regs *regs) { struct ns83820 *dev = data; int count = 0; u32 isr; dprintk("ns83820_irq(%p)\n", dev);
dev->ihr = 0;
while (count++ < 32 && (isr = readl(dev->base + ISR))) { dprintk("irq: %08x\n", isr);
if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC)) Dprintk("odd isr? 0x%08x\n", isr);
if ((ISR_RXEARLY | ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr) { if (ISR_RXIDLE & isr) { dev->rx_info.idle = 1; Dprintk("oh dear, we are idle\n"); }
if ((ISR_RXDESC) & isr) { rx_irq(dev); writel(4, dev->base + IHR); }
if (nr_rx_empty(dev) >= NR_RX_DESC/4) { if (dev->rx_info.up) { rx_refill(dev, GFP_ATOMIC); kick_rx(dev); } }
if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4) schedule_task(&dev->tq_refill); else kick_rx(dev); if (dev->rx_info.idle) Dprintk("BAD\n"); }
if (unlikely(ISR_RXSOVR & isr)) { Dprintk("overrun: rxsovr\n"); dev->stats.rx_over_errors ++; } if (unlikely(ISR_RXORN & isr)) { Dprintk("overrun: rxorn\n"); dev->stats.rx_over_errors ++; }
if ((ISR_RXRCMP & isr) && dev->rx_info.up) writel(CR_RXE, dev->base + CR);
if (ISR_TXIDLE & isr) { u32 txdp; txdp = readl(dev->base + TXDP); dprintk("txdp: %08x\n", txdp); txdp -= dev->tx_phy_descs; dev->tx_idx = txdp / (DESC_SIZE * 4); if (dev->tx_idx >= NR_TX_DESC) { printk(KERN_ALERT "%s: BUG -- txdp out of range\n", dev->net_dev.name); dev->tx_idx = 0; } if (dev->tx_idx != dev->tx_free_idx) writel(CR_TXE, dev->base + CR); //kick_tx(dev); else dev->tx_idle = 1; mb(); if (dev->tx_idx != dev->tx_free_idx) kick_tx(dev); }
/* Defer tx ring processing until more than a minimum amount of * work has accumulated */ if ((ISR_TXDESC | ISR_TXIDLE) & isr) do_tx_done(dev);
if (ISR_MIB & isr) { spin_lock(&dev->misc_lock); ns83820_update_stats(dev); spin_unlock(&dev->misc_lock); }
if (ISR_PHY & isr) phy_intr(dev); }
#if 0 /* Still working on the interrupt mitigation strategy */ if (dev->ihr) writel(dev->ihr, dev->base + IHR); #endif }
static void ns83820_do_reset(struct ns83820 *dev, u32 which) { Dprintk("resetting chip...\n"); writel(which, dev->base + CR); do { schedule(); } while (readl(dev->base + CR) & which); Dprintk("okay!\n"); }
static int ns83820_stop(struct net_device *_dev) { struct ns83820 *dev = (struct ns83820 *)_dev;
/* FIXME: protect against interrupt handler? */
/* disable interrupts */ writel(0, dev->base + IMR); writel(0, dev->base + IER); readl(dev->base + IER);
dev->rx_info.up = 0; synchronize_irq();
ns83820_do_reset(dev, CR_RST);
synchronize_irq();
dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK); ns83820_cleanup_rx(dev); ns83820_cleanup_tx(dev);
return 0; }
static int ns83820_open(struct net_device *_dev) { struct ns83820 *dev = (struct ns83820 *)_dev; unsigned i; u32 desc; int ret;
dprintk("ns83820_open\n");
writel(0, dev->base + PQCR);
ret = ns83820_setup_rx(dev); if (ret) goto failed;
memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE); for (i=0; i<NR_TX_DESC; i++) { dev->tx_descs[(i * DESC_SIZE) + LINK] = cpu_to_le32( dev->tx_phy_descs + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4); }
dev->tx_idx = 0; dev->tx_done_idx = 0; desc = dev->tx_phy_descs; writel(0, dev->base + TXDP_HI); writel(desc, dev->base + TXDP);
//printk("IMR: %08x / %08x\n", readl(dev->base + IMR), dev->IMR_cache);
set_bit(0, &dev->tx_idle); netif_start_queue(&dev->net_dev); /* FIXME: wait for phy to come up */
return 0;
failed: ns83820_stop(_dev); return ret; }
#if 0 /* FIXME: implement this! */ static void ns83820_tx_timeout(struct net_device *_dev) { struct ns83820 *dev = (struct ns83820 *)_dev;
printk("ns83820_tx_timeout\n"); } #endif
static void ns83820_getmac(struct ns83820 *dev, u8 *mac) { unsigned i; for (i=0; i<3; i++) { u32 data; #if 0 /* I've left this in as an example of how to use eeprom.h */ data = eeprom_readw(&dev->ee, 0xa + 2 - i); #else /* Read from the perfect match memory: this is loaded by * the chip from the EEPROM via the EELOAD self test. */ writel(i*2, dev->base + RFCR); data = readl(dev->base + RFDR); #endif *mac++ = data; *mac++ = data >> 8; } }
static int ns83820_change_mtu(struct net_device *_dev, int new_mtu) { if (new_mtu > RX_BUF_SIZE) return -EINVAL; _dev->mtu = new_mtu; return 0; }
static void ns83820_set_multicast(struct net_device *_dev) { struct ns83820 *dev = (void *)_dev; u8 *rfcr = dev->base + RFCR; u32 and_mask = 0xffffffff; u32 or_mask = 0;
if (dev->net_dev.flags & IFF_PROMISC) or_mask |= RFCR_AAU | RFCR_AAM; else and_mask &= ~(RFCR_AAU | RFCR_AAM);
if (dev->net_dev.flags & IFF_ALLMULTI) or_mask |= RFCR_AAM; else and_mask &= ~RFCR_AAM;
spin_lock_irq(&dev->misc_lock); writel((readl(rfcr) & and_mask) | or_mask, rfcr); spin_unlock_irq(&dev->misc_lock); }
static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id) { struct ns83820 *dev; long addr; int err;
dev = (struct ns83820 *)alloc_etherdev((sizeof *dev) - (sizeof dev->net_dev)); err = -ENOMEM; if (!dev) goto out;
spin_lock_init(&dev->rx_info.lock); spin_lock_init(&dev->tx_lock); spin_lock_init(&dev->misc_lock); dev->pci_dev = pci_dev;
dev->ee.cache = &dev->MEAR_cache; dev->ee.lock = &dev->misc_lock; dev->net_dev.owner = THIS_MODULE;
PREPARE_TQUEUE(&dev->tq_refill, queue_refill, dev);
err = pci_enable_device(pci_dev); if (err) { printk(KERN_INFO "ns83820: pci_enable_dev: %d\n", err); goto out_free; }
pci_set_master(pci_dev); addr = pci_resource_start(pci_dev, 1); dev->base = ioremap_nocache(addr, PAGE_SIZE); dev->tx_descs = pci_alloc_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs); dev->rx_info.descs = pci_alloc_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs); err = -ENOMEM; if (!dev->base || !dev->tx_descs || !dev->rx_info.descs) goto out_disable;
dprintk("%p: %08lx %p: %08lx\n", dev->tx_descs, dev->tx_phy_descs, dev->rx_info.descs, dev->rx_info.phy_descs); /* disable interrupts */ writel(0, dev->base + IMR); writel(0, dev->base + IER); readl(dev->base + IER);
dev->IMR_cache = 0;
setup_ee_mem_bitbanger(&dev->ee, (long)dev->base + MEAR, 3, 2, 1, 0, 0);
err = request_irq(pci_dev->irq, ns83820_irq, SA_SHIRQ, dev->net_dev.name, dev); if (err) { printk(KERN_INFO "ns83820: unable to register irq %d\n", pci_dev->irq); goto out_unmap; }
if(register_netdev(&dev->net_dev)) goto out_unmap;
dev->net_dev.open = ns83820_open; dev->net_dev.stop = ns83820_stop; dev->net_dev.hard_start_xmit = ns83820_hard_start_xmit; dev->net_dev.change_mtu = ns83820_change_mtu; dev->net_dev.get_stats = ns83820_get_stats; dev->net_dev.change_mtu = ns83820_change_mtu; dev->net_dev.set_multicast_list = ns83820_set_multicast; dev->net_dev.do_ioctl = ns83820_ioctl; //FIXME: dev->net_dev.tx_timeout = ns83820_tx_timeout;
pci_set_drvdata(pci_dev, dev);
ns83820_do_reset(dev, CR_RST);
dprintk("start bist\n"); writel(PTSCR_EEBIST_EN, dev->base + PTSCR); do { schedule(); } while (readl(dev->base + PTSCR) & PTSCR_EEBIST_EN); dprintk("done bist\n");
dprintk("start eeload\n"); writel(PTSCR_EELOAD_EN, dev->base + PTSCR); do { schedule(); } while (readl(dev->base + PTSCR) & PTSCR_EELOAD_EN); dprintk("done eeload\n");
/* I love config registers */ dev->CFG_cache = readl(dev->base + CFG);
if ((dev->CFG_cache & CFG_PCI64_DET)) { printk("%s: enabling 64 bit PCI addressing.\n", dev->net_dev.name); dev->CFG_cache |= CFG_T64ADDR | CFG_DATA64_EN; #if defined(USE_64BIT_ADDR) dev->net_dev.features |= NETIF_F_HIGHDMA; #endif } else dev->CFG_cache &= ~(CFG_T64ADDR | CFG_DATA64_EN);
dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS | CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 | CFG_M64ADDR); dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS | CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL; dev->CFG_cache |= CFG_REQALG; dev->CFG_cache |= CFG_POW; #ifdef USE_64BIT_ADDR dev->CFG_cache |= CFG_M64ADDR; #endif /* Big endian mode does not seem to do what the docs suggest */ dev->CFG_cache &= ~CFG_BEM;
/* setup optical transceiver if we have one */ if (dev->CFG_cache & CFG_TBI_EN) { printk("%s: enabling optical transceiver\n", dev->net_dev.name); writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
/* setup auto negotiation feature advertisement */ writel(readl(dev->base + TANAR) | TANAR_HALF_DUP | TANAR_FULL_DUP, dev->base + TANAR);
/* start auto negotiation */ writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, dev->base + TBICR); writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); dev->linkstate = LINK_AUTONEGOTIATE;
dev->CFG_cache |= CFG_MODE_1000; }
writel(dev->CFG_cache, dev->base + CFG); dprintk("CFG: %08x\n", dev->CFG_cache);
if (readl(dev->base + SRR)) writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
/* Note! The DMA burst size interacts with packet * transmission, such that the largest packet that * can be transmitted is 8192 - FLTH - burst size. * If only the transmit fifo was larger... */ writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA1024 | ((1600 / 32) * 0x100), dev->base + TXCFG);
/* Flush the interrupt holdoff timer */ writel(0x000, dev->base + IHR); writel(0x100, dev->base + IHR);
/* Set Rx to full duplex, don't accept runt, errored, long or length * range errored packets. Set MXDMA to 7 => 512 word burst */ writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD | RXCFG_ALP | RXCFG_MXDMA | 0, dev->base + RXCFG);
/* Disable priority queueing */ writel(0, dev->base + PQCR);
/* Enable IP checksum validation and detetion of VLAN headers. * Note: do not set the reject options as at least the 0x102 * revision of the chip does not properly accept IP fragments * at least for UDP. */ writel(VRCR_IPEN | VRCR_VTDEN, dev->base + VRCR);
/* Enable per-packet TCP/UDP/IP checksumming */ writel(VTCR_PPCHK, dev->base + VTCR);
/* Disable Pause frames */ writel(0, dev->base + PCR);
/* Disable Wake On Lan */ writel(0, dev->base + WCSR);
ns83820_getmac(dev, dev->net_dev.dev_addr);
/* Yes, we support dumb IP checksum on transmit */ dev->net_dev.features |= NETIF_F_SG; dev->net_dev.features |= NETIF_F_IP_CSUM; #if defined(USE_64BIT_ADDR) || defined(CONFIG_HIGHMEM4G) dev->net_dev.features |= NETIF_F_HIGHDMA; #endif
printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n", dev->net_dev.name, (unsigned)readl(dev->base + SRR) >> 8, (unsigned)readl(dev->base + SRR) & 0xff, dev->net_dev.dev_addr[0], dev->net_dev.dev_addr[1], dev->net_dev.dev_addr[2], dev->net_dev.dev_addr[3], dev->net_dev.dev_addr[4], dev->net_dev.dev_addr[5], addr, pci_dev->irq, (dev->net_dev.features & NETIF_F_HIGHDMA) ? "sg" : "h,sg" );
return 0;
out_unmap: iounmap(dev->base); out_disable: pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs); pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs); pci_disable_device(pci_dev); out_free: kfree(dev); pci_set_drvdata(pci_dev, NULL); out: return err; }
static void __devexit ns83820_remove_one(struct pci_dev *pci_dev) { struct ns83820 *dev = pci_get_drvdata(pci_dev);
if (!dev) /* paranoia */ return;
writel(0, dev->base + IMR); /* paranoia */ writel(0, dev->base + IER); readl(dev->base + IER);
unregister_netdev(&dev->net_dev); free_irq(dev->pci_dev->irq, dev); iounmap(dev->base); pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs); pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs); pci_disable_device(dev->pci_dev); kfree(dev); pci_set_drvdata(pci_dev, NULL); }
static struct pci_device_id ns83820_pci_tbl[] __devinitdata = { { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, 0, }, { 0, }, };
static struct pci_driver driver = { name: "ns83820", id_table: ns83820_pci_tbl, probe: ns83820_init_one, remove: __devexit_p(ns83820_remove_one), #if 0 /* FIXME: implement */ suspend: , resume: , #endif };
static int __init ns83820_init(void) { printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n"); return pci_module_init(&driver); }
static void __exit ns83820_exit(void) { pci_unregister_driver(&driver); }
MODULE_AUTHOR("Benjamin LaHaise <bcrl@redhat.com>"); MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver"); MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
module_init(ns83820_init); module_exit(ns83820_exit);
|