Viewing file: ariadne.c (23.33 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Amiga Linux/m68k Ariadne Ethernet Driver * * © Copyright 1995 by Geert Uytterhoeven (geert@linux-m68k.org) * Peter De Schrijver * (Peter.DeSchrijver@linux.cc.kuleuven.ac.be) * * --------------------------------------------------------------------------- * * This program is based on * * lance.c: An AMD LANCE ethernet driver for linux. * Written 1993-94 by Donald Becker. * * Am79C960: PCnet(tm)-ISA Single-Chip Ethernet Controller * Advanced Micro Devices * Publication #16907, Rev. B, Amendment/0, May 1994 * * MC68230: Parallel Interface/Timer (PI/T) * Motorola Semiconductors, December, 1983 * * --------------------------------------------------------------------------- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the Linux * distribution for more details. * * --------------------------------------------------------------------------- * * The Ariadne is a Zorro-II board made by Village Tronic. It contains: * * - an Am79C960 PCnet-ISA Single-Chip Ethernet Controller with both * 10BASE-2 (thin coax) and 10BASE-T (UTP) connectors * * - an MC68230 Parallel Interface/Timer configured as 2 parallel ports */
#include <linux/module.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/skbuff.h> #include <linux/init.h>
#include <asm/bitops.h> #include <asm/amigaints.h> #include <asm/amigahw.h> #include <linux/zorro.h> #include <asm/io.h> #include <asm/irq.h>
#include "ariadne.h"
#ifdef ARIADNE_DEBUG int ariadne_debug = ARIADNE_DEBUG; #else int ariadne_debug = 1; #endif
/* * Macros to Fix Endianness problems */
/* Swap the Bytes in a WORD */ #define swapw(x) (((x>>8)&0x00ff)|((x<<8)&0xff00)) /* Get the Low BYTE in a WORD */ #define lowb(x) (x&0xff) /* Get the Swapped High WORD in a LONG */ #define swhighw(x) ((((x)>>8)&0xff00)|(((x)>>24)&0x00ff)) /* Get the Swapped Low WORD in a LONG */ #define swloww(x) ((((x)<<8)&0xff00)|(((x)>>8)&0x00ff))
/* * Transmit/Receive Ring Definitions */
#define TX_RING_SIZE 5 #define RX_RING_SIZE 16
#define PKT_BUF_SIZE 1520
/* * Private Device Data */
struct ariadne_private { volatile struct TDRE *tx_ring[TX_RING_SIZE]; volatile struct RDRE *rx_ring[RX_RING_SIZE]; volatile u_short *tx_buff[TX_RING_SIZE]; volatile u_short *rx_buff[RX_RING_SIZE]; int cur_tx, cur_rx; /* The next free ring entry */ int dirty_tx; /* The ring entries to be free()ed. */ struct net_device_stats stats; char tx_full; struct net_device *dev; /* Backpointer */ struct ariadne_private *next_module; };
/* * Structure Created in the Ariadne's RAM Buffer */
struct lancedata { struct TDRE tx_ring[TX_RING_SIZE]; struct RDRE rx_ring[RX_RING_SIZE]; u_short tx_buff[TX_RING_SIZE][PKT_BUF_SIZE/sizeof(u_short)]; u_short rx_buff[RX_RING_SIZE][PKT_BUF_SIZE/sizeof(u_short)]; };
#ifdef MODULE static struct ariadne_private *root_ariadne_dev; #endif
static int ariadne_open(struct net_device *dev); static void ariadne_init_ring(struct net_device *dev); static int ariadne_start_xmit(struct sk_buff *skb, struct net_device *dev); static void ariadne_tx_timeout(struct net_device *dev); static int ariadne_rx(struct net_device *dev); static void ariadne_reset(struct net_device *dev); static void ariadne_interrupt(int irq, void *data, struct pt_regs *fp); static int ariadne_close(struct net_device *dev); static struct net_device_stats *ariadne_get_stats(struct net_device *dev); #ifdef HAVE_MULTICAST static void set_multicast_list(struct net_device *dev); #endif
static void memcpyw(volatile u_short *dest, u_short *src, int len) { while (len >= 2) { *(dest++) = *(src++); len -= 2; } if (len == 1) *dest = (*(u_char *)src)<<8; }
static int __init ariadne_probe(void) { struct zorro_dev *z = NULL; struct net_device *dev; struct ariadne_private *priv; int res = -ENODEV;
while ((z = zorro_find_device(ZORRO_PROD_VILLAGE_TRONIC_ARIADNE, z))) { unsigned long board = z->resource.start; unsigned long base_addr = board+ARIADNE_LANCE; unsigned long mem_start = board+ARIADNE_RAM; struct resource *r1, *r2;
r1 = request_mem_region(base_addr, sizeof(struct Am79C960), "Am79C960"); if (!r1) continue; r2 = request_mem_region(mem_start, ARIADNE_RAM_SIZE, "RAM"); if (!r2) { release_resource(r1); continue; }
dev = init_etherdev(NULL, sizeof(struct ariadne_private));
if (dev == NULL) { release_resource(r1); release_resource(r2); return -ENOMEM; } SET_MODULE_OWNER(dev); priv = dev->priv;
r1->name = dev->name; r2->name = dev->name;
priv->dev = dev; dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0x60; dev->dev_addr[2] = 0x30; dev->dev_addr[3] = (z->rom.er_SerialNumber>>16) & 0xff; dev->dev_addr[4] = (z->rom.er_SerialNumber>>8) & 0xff; dev->dev_addr[5] = z->rom.er_SerialNumber & 0xff; printk("%s: Ariadne at 0x%08lx, Ethernet Address " "%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, board, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
dev->base_addr = ZTWO_VADDR(base_addr); dev->mem_start = ZTWO_VADDR(mem_start); dev->mem_end = dev->mem_start+ARIADNE_RAM_SIZE;
dev->open = &ariadne_open; dev->stop = &ariadne_close; dev->hard_start_xmit = &ariadne_start_xmit; dev->tx_timeout = &ariadne_tx_timeout; dev->watchdog_timeo = 5*HZ; dev->get_stats = &ariadne_get_stats; dev->set_multicast_list = &set_multicast_list;
#ifdef MODULE priv->next_module = root_ariadne_dev; root_ariadne_dev = priv; #endif res = 0; } return res; }
static int ariadne_open(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; u_short in; u_long version; int i;
/* Reset the LANCE */ in = lance->Reset;
/* Stop the LANCE */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = STOP;
/* Check the LANCE version */ lance->RAP = CSR88; /* Chip ID */ version = swapw(lance->RDP); lance->RAP = CSR89; /* Chip ID */ version |= swapw(lance->RDP)<<16; if ((version & 0x00000fff) != 0x00000003) { printk("ariadne_open: Couldn't find AMD Ethernet Chip\n"); return -EAGAIN; } if ((version & 0x0ffff000) != 0x00003000) { printk("ariadne_open: Couldn't find Am79C960 (Wrong part number = %ld)\n", (version & 0x0ffff000)>>12); return -EAGAIN; } #if 0 printk("ariadne_open: Am79C960 (PCnet-ISA) Revision %ld\n", (version & 0xf0000000)>>28); #endif
ariadne_init_ring(dev);
/* Miscellaneous Stuff */ lance->RAP = CSR3; /* Interrupt Masks and Deferral Control */ lance->RDP = 0x0000; lance->RAP = CSR4; /* Test and Features Control */ lance->RDP = DPOLL|APAD_XMT|MFCOM|RCVCCOM|TXSTRTM|JABM;
/* Set the Multicast Table */ lance->RAP = CSR8; /* Logical Address Filter, LADRF[15:0] */ lance->RDP = 0x0000; lance->RAP = CSR9; /* Logical Address Filter, LADRF[31:16] */ lance->RDP = 0x0000; lance->RAP = CSR10; /* Logical Address Filter, LADRF[47:32] */ lance->RDP = 0x0000; lance->RAP = CSR11; /* Logical Address Filter, LADRF[63:48] */ lance->RDP = 0x0000;
/* Set the Ethernet Hardware Address */ lance->RAP = CSR12; /* Physical Address Register, PADR[15:0] */ lance->RDP = ((u_short *)&dev->dev_addr[0])[0]; lance->RAP = CSR13; /* Physical Address Register, PADR[31:16] */ lance->RDP = ((u_short *)&dev->dev_addr[0])[1]; lance->RAP = CSR14; /* Physical Address Register, PADR[47:32] */ lance->RDP = ((u_short *)&dev->dev_addr[0])[2];
/* Set the Init Block Mode */ lance->RAP = CSR15; /* Mode Register */ lance->RDP = 0x0000;
/* Set the Transmit Descriptor Ring Pointer */ lance->RAP = CSR30; /* Base Address of Transmit Ring */ lance->RDP = swloww(ARIADNE_RAM+offsetof(struct lancedata, tx_ring)); lance->RAP = CSR31; /* Base Address of transmit Ring */ lance->RDP = swhighw(ARIADNE_RAM+offsetof(struct lancedata, tx_ring));
/* Set the Receive Descriptor Ring Pointer */ lance->RAP = CSR24; /* Base Address of Receive Ring */ lance->RDP = swloww(ARIADNE_RAM+offsetof(struct lancedata, rx_ring)); lance->RAP = CSR25; /* Base Address of Receive Ring */ lance->RDP = swhighw(ARIADNE_RAM+offsetof(struct lancedata, rx_ring));
/* Set the Number of RX and TX Ring Entries */ lance->RAP = CSR76; /* Receive Ring Length */ lance->RDP = swapw(((u_short)-RX_RING_SIZE)); lance->RAP = CSR78; /* Transmit Ring Length */ lance->RDP = swapw(((u_short)-TX_RING_SIZE));
/* Enable Media Interface Port Auto Select (10BASE-2/10BASE-T) */ lance->RAP = ISACSR2; /* Miscellaneous Configuration */ lance->IDP = ASEL;
/* LED Control */ lance->RAP = ISACSR5; /* LED1 Status */ lance->IDP = PSE|XMTE; lance->RAP = ISACSR6; /* LED2 Status */ lance->IDP = PSE|COLE; lance->RAP = ISACSR7; /* LED3 Status */ lance->IDP = PSE|RCVE;
netif_start_queue(dev);
i = request_irq(IRQ_AMIGA_PORTS, ariadne_interrupt, SA_SHIRQ, dev->name, dev); if (i) return i;
lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|STRT;
return 0; }
static void ariadne_init_ring(struct net_device *dev) { struct ariadne_private *priv = (struct ariadne_private *)dev->priv; volatile struct lancedata *lancedata = (struct lancedata *)dev->mem_start; int i;
netif_stop_queue(dev);
priv->tx_full = 0; priv->cur_rx = priv->cur_tx = 0; priv->dirty_tx = 0;
/* Set up TX Ring */ for (i = 0; i < TX_RING_SIZE; i++) { volatile struct TDRE *t = &lancedata->tx_ring[i]; t->TMD0 = swloww(ARIADNE_RAM+offsetof(struct lancedata, tx_buff[i])); t->TMD1 = swhighw(ARIADNE_RAM+offsetof(struct lancedata, tx_buff[i])) | TF_STP | TF_ENP; t->TMD2 = swapw((u_short)-PKT_BUF_SIZE); t->TMD3 = 0; priv->tx_ring[i] = &lancedata->tx_ring[i]; priv->tx_buff[i] = lancedata->tx_buff[i]; #if 0 printk("TX Entry %2d at %p, Buf at %p\n", i, &lancedata->tx_ring[i], lancedata->tx_buff[i]); #endif }
/* Set up RX Ring */ for (i = 0; i < RX_RING_SIZE; i++) { volatile struct RDRE *r = &lancedata->rx_ring[i]; r->RMD0 = swloww(ARIADNE_RAM+offsetof(struct lancedata, rx_buff[i])); r->RMD1 = swhighw(ARIADNE_RAM+offsetof(struct lancedata, rx_buff[i])) | RF_OWN; r->RMD2 = swapw((u_short)-PKT_BUF_SIZE); r->RMD3 = 0x0000; priv->rx_ring[i] = &lancedata->rx_ring[i]; priv->rx_buff[i] = lancedata->rx_buff[i]; #if 0 printk("RX Entry %2d at %p, Buf at %p\n", i, &lancedata->rx_ring[i], lancedata->rx_buff[i]); #endif } }
static int ariadne_close(struct net_device *dev) { struct ariadne_private *priv = (struct ariadne_private *)dev->priv; volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
netif_stop_queue(dev);
lance->RAP = CSR112; /* Missed Frame Count */ priv->stats.rx_missed_errors = swapw(lance->RDP); lance->RAP = CSR0; /* PCnet-ISA Controller Status */
if (ariadne_debug > 1) { printk("%s: Shutting down ethercard, status was %2.2x.\n", dev->name, lance->RDP); printk("%s: %lu packets missed\n", dev->name, priv->stats.rx_missed_errors); }
/* We stop the LANCE here -- it occasionally polls memory if we don't. */ lance->RDP = STOP;
free_irq(IRQ_AMIGA_PORTS, dev);
return 0; }
static inline void ariadne_reset(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = STOP; ariadne_init_ring(dev); lance->RDP = INEA|STRT; netif_start_queue(dev); }
static void ariadne_interrupt(int irq, void *data, struct pt_regs *fp) { struct net_device *dev = (struct net_device *)data; volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; struct ariadne_private *priv; int csr0, boguscnt;
if (dev == NULL) { printk("ariadne_interrupt(): irq for unknown device.\n"); return; }
lance->RAP = CSR0; /* PCnet-ISA Controller Status */
if (!(lance->RDP & INTR)) /* Check if any interrupt has been */ return; /* generated by the board. */
priv = (struct ariadne_private *)dev->priv;
boguscnt = 10; while ((csr0 = lance->RDP) & (ERR|RINT|TINT) && --boguscnt >= 0) { /* Acknowledge all of the current interrupt sources ASAP. */ lance->RDP = csr0 & ~(INEA|TDMD|STOP|STRT|INIT);
#if 0 if (ariadne_debug > 5) { printk("%s: interrupt csr0=%#2.2x new csr=%#2.2x.", dev->name, csr0, lance->RDP); printk("["); if (csr0 & INTR) printk(" INTR"); if (csr0 & INEA) printk(" INEA"); if (csr0 & RXON) printk(" RXON"); if (csr0 & TXON) printk(" TXON"); if (csr0 & TDMD) printk(" TDMD"); if (csr0 & STOP) printk(" STOP"); if (csr0 & STRT) printk(" STRT"); if (csr0 & INIT) printk(" INIT"); if (csr0 & ERR) printk(" ERR"); if (csr0 & BABL) printk(" BABL"); if (csr0 & CERR) printk(" CERR"); if (csr0 & MISS) printk(" MISS"); if (csr0 & MERR) printk(" MERR"); if (csr0 & RINT) printk(" RINT"); if (csr0 & TINT) printk(" TINT"); if (csr0 & IDON) printk(" IDON"); printk(" ]\n"); } #endif
if (csr0 & RINT) /* Rx interrupt */ ariadne_rx(dev);
if (csr0 & TINT) { /* Tx-done interrupt */ int dirty_tx = priv->dirty_tx;
while (dirty_tx < priv->cur_tx) { int entry = dirty_tx % TX_RING_SIZE; int status = lowb(priv->tx_ring[entry]->TMD1);
if (status & TF_OWN) break; /* It still hasn't been Txed */
priv->tx_ring[entry]->TMD1 &= 0xff00;
if (status & TF_ERR) { /* There was an major error, log it. */ int err_status = priv->tx_ring[entry]->TMD3; priv->stats.tx_errors++; if (err_status & EF_RTRY) priv->stats.tx_aborted_errors++; if (err_status & EF_LCAR) priv->stats.tx_carrier_errors++; if (err_status & EF_LCOL) priv->stats.tx_window_errors++; if (err_status & EF_UFLO) { /* Ackk! On FIFO errors the Tx unit is turned off! */ priv->stats.tx_fifo_errors++; /* Remove this verbosity later! */ printk("%s: Tx FIFO error! Status %4.4x.\n", dev->name, csr0); /* Restart the chip. */ lance->RDP = STRT; } } else { if (status & (TF_MORE|TF_ONE)) priv->stats.collisions++; priv->stats.tx_packets++; } dirty_tx++; }
#ifndef final_version if (priv->cur_tx - dirty_tx >= TX_RING_SIZE) { printk("out-of-sync dirty pointer, %d vs. %d, full=%d.\n", dirty_tx, priv->cur_tx, priv->tx_full); dirty_tx += TX_RING_SIZE; } #endif
if (priv->tx_full && netif_queue_stopped(dev) && dirty_tx > priv->cur_tx - TX_RING_SIZE + 2) { /* The ring is no longer full. */ priv->tx_full = 0; netif_wake_queue(dev); }
priv->dirty_tx = dirty_tx; }
/* Log misc errors. */ if (csr0 & BABL) priv->stats.tx_errors++; /* Tx babble. */ if (csr0 & MISS) priv->stats.rx_errors++; /* Missed a Rx frame. */ if (csr0 & MERR) { printk("%s: Bus master arbitration failure, status %4.4x.\n", dev->name, csr0); /* Restart the chip. */ lance->RDP = STRT; } }
/* Clear any other interrupt, and set interrupt enable. */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|BABL|CERR|MISS|MERR|IDON;
#if 0 if (ariadne_debug > 4) printk("%s: exiting interrupt, csr%d=%#4.4x.\n", dev->name, lance->RAP, lance->RDP); #endif return; }
static void ariadne_tx_timeout(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
printk(KERN_ERR "%s: transmit timed out, status %4.4x, resetting.\n", dev->name, lance->RDP); ariadne_reset(dev); netif_wake_queue(dev); }
static int ariadne_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ariadne_private *priv = (struct ariadne_private *)dev->priv; volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; int entry; unsigned long flags;
#if 0 if (ariadne_debug > 3) { lance->RAP = CSR0; /* PCnet-ISA Controller Status */ printk("%s: ariadne_start_xmit() called, csr0 %4.4x.\n", dev->name, lance->RDP); lance->RDP = 0x0000; } #endif
/* Fill in a Tx ring entry */
#if 0 printk("TX pkt type 0x%04x from ", ((u_short *)skb->data)[6]); { int i; u_char *ptr = &((u_char *)skb->data)[6]; for (i = 0; i < 6; i++) printk("%02x", ptr[i]); } printk(" to "); { int i; u_char *ptr = (u_char *)skb->data; for (i = 0; i < 6; i++) printk("%02x", ptr[i]); } printk(" data 0x%08x len %d\n", (int)skb->data, (int)skb->len); #endif
save_flags(flags); cli();
entry = priv->cur_tx % TX_RING_SIZE;
/* Caution: the write order is important here, set the base address with the "ownership" bits last. */
priv->tx_ring[entry]->TMD2 = swapw((u_short)-skb->len); priv->tx_ring[entry]->TMD3 = 0x0000; memcpyw(priv->tx_buff[entry], (u_short *)skb->data, skb->len <= ETH_ZLEN ? ETH_ZLEN : skb->len);
#if 0 { int i, len;
len = skb->len > 64 ? 64 : skb->len; len >>= 1; for (i = 0; i < len; i += 8) { int j; printk("%04x:", i); for (j = 0; (j < 8) && ((i+j) < len); j++) { if (!(j & 1)) printk(" "); printk("%04x", priv->tx_buff[entry][i+j]); } printk("\n"); } } #endif
priv->tx_ring[entry]->TMD1 = (priv->tx_ring[entry]->TMD1&0xff00)|TF_OWN|TF_STP|TF_ENP;
dev_kfree_skb(skb);
priv->cur_tx++; if ((priv->cur_tx >= TX_RING_SIZE) && (priv->dirty_tx >= TX_RING_SIZE)) {
#if 0 printk("*** Subtracting TX_RING_SIZE from cur_tx (%d) and dirty_tx (%d)\n", priv->cur_tx, priv->dirty_tx); #endif
priv->cur_tx -= TX_RING_SIZE; priv->dirty_tx -= TX_RING_SIZE; }
/* Trigger an immediate send poll. */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|TDMD;
dev->trans_start = jiffies;
if (lowb(priv->tx_ring[(entry+1) % TX_RING_SIZE]->TMD1) != 0) { netif_stop_queue(dev); priv->tx_full = 1; } restore_flags(flags);
return 0; }
static int ariadne_rx(struct net_device *dev) { struct ariadne_private *priv = (struct ariadne_private *)dev->priv; int entry = priv->cur_rx % RX_RING_SIZE; int i;
/* If we own the next entry, it's a new packet. Send it up. */ while (!(lowb(priv->rx_ring[entry]->RMD1) & RF_OWN)) { int status = lowb(priv->rx_ring[entry]->RMD1);
if (status != (RF_STP|RF_ENP)) { /* There was an error. */ /* There is a tricky error noted by John Murphy, <murf@perftech.com> to Russ Nelson: Even with full-sized buffers it's possible for a jabber packet to use two buffers, with only the last correctly noting the error. */ if (status & RF_ENP) /* Only count a general error at the end of a packet.*/ priv->stats.rx_errors++; if (status & RF_FRAM) priv->stats.rx_frame_errors++; if (status & RF_OFLO) priv->stats.rx_over_errors++; if (status & RF_CRC) priv->stats.rx_crc_errors++; if (status & RF_BUFF) priv->stats.rx_fifo_errors++; priv->rx_ring[entry]->RMD1 &= 0xff00|RF_STP|RF_ENP; } else { /* Malloc up new buffer, compatible with net-3. */ short pkt_len = swapw(priv->rx_ring[entry]->RMD3); struct sk_buff *skb;
skb = dev_alloc_skb(pkt_len+2); if (skb == NULL) { printk("%s: Memory squeeze, deferring packet.\n", dev->name); for (i = 0; i < RX_RING_SIZE; i++) if (lowb(priv->rx_ring[(entry+i) % RX_RING_SIZE]->RMD1) & RF_OWN) break;
if (i > RX_RING_SIZE-2) { priv->stats.rx_dropped++; priv->rx_ring[entry]->RMD1 |= RF_OWN; priv->cur_rx++; } break; }
skb->dev = dev; skb_reserve(skb,2); /* 16 byte align */ skb_put(skb,pkt_len); /* Make room */ eth_copy_and_sum(skb, (char *)priv->rx_buff[entry], pkt_len,0); skb->protocol=eth_type_trans(skb,dev); #if 0 printk("RX pkt type 0x%04x from ", ((u_short *)skb->data)[6]); { int i; u_char *ptr = &((u_char *)skb->data)[6]; for (i = 0; i < 6; i++) printk("%02x", ptr[i]); } printk(" to "); { int i; u_char *ptr = (u_char *)skb->data; for (i = 0; i < 6; i++) printk("%02x", ptr[i]); } printk(" data 0x%08x len %d\n", (int)skb->data, (int)skb->len); #endif
netif_rx(skb); dev->last_rx = jiffies; priv->stats.rx_packets++; priv->stats.rx_bytes += pkt_len; }
priv->rx_ring[entry]->RMD1 |= RF_OWN; entry = (++priv->cur_rx) % RX_RING_SIZE; }
priv->cur_rx = priv->cur_rx % RX_RING_SIZE;
/* We should check that at least two ring entries are free. If not, we should free one and mark stats->rx_dropped++. */
return 0; }
static struct net_device_stats *ariadne_get_stats(struct net_device *dev) { struct ariadne_private *priv = (struct ariadne_private *)dev->priv; volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr; short saved_addr; unsigned long flags;
save_flags(flags); cli(); saved_addr = lance->RAP; lance->RAP = CSR112; /* Missed Frame Count */ priv->stats.rx_missed_errors = swapw(lance->RDP); lance->RAP = saved_addr; restore_flags(flags);
return &priv->stats; }
/* Set or clear the multicast filter for this adaptor. num_addrs == -1 Promiscuous mode, receive all packets num_addrs == 0 Normal mode, clear multicast list num_addrs > 0 Multicast mode, receive normal and MC packets, and do best-effort filtering. */ static void set_multicast_list(struct net_device *dev) { volatile struct Am79C960 *lance = (struct Am79C960*)dev->base_addr;
if (!netif_running(dev)) return;
netif_stop_queue(dev);
/* We take the simple way out and always enable promiscuous mode. */ lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = STOP; /* Temporarily stop the lance. */ ariadne_init_ring(dev);
if (dev->flags & IFF_PROMISC) { /* Log any net taps. */ printk("%s: Promiscuous mode enabled.\n", dev->name); lance->RAP = CSR15; /* Mode Register */ lance->RDP = PROM; /* Set promiscuous mode */ } else { short multicast_table[4]; int num_addrs = dev->mc_count; int i; /* We don't use the multicast table, but rely on upper-layer filtering. */ memset(multicast_table, (num_addrs == 0) ? 0 : -1, sizeof(multicast_table)); for (i = 0; i < 4; i++) { lance->RAP = CSR8+(i<<8); /* Logical Address Filter */ lance->RDP = swapw(multicast_table[i]); } lance->RAP = CSR15; /* Mode Register */ lance->RDP = 0x0000; /* Unset promiscuous mode */ }
lance->RAP = CSR0; /* PCnet-ISA Controller Status */ lance->RDP = INEA|STRT|IDON; /* Resume normal operation. */
netif_wake_queue(dev); }
static void __exit ariadne_cleanup(void) { #ifdef MODULE struct ariadne_private *next; struct net_device *dev;
while (root_ariadne_dev) { next = root_ariadne_dev->next_module; dev = root_ariadne_dev->dev; unregister_netdev(dev); release_mem_region(ZTWO_PADDR(dev->base_addr), sizeof(struct Am79C960)); release_mem_region(ZTWO_PADDR(dev->mem_start), ARIADNE_RAM_SIZE); kfree(dev); root_ariadne_dev = next; } #endif }
module_init(ariadne_probe); module_exit(ariadne_cleanup);
|