Viewing file: 3c505.c (49.63 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Linux Ethernet device driver for the 3Com Etherlink Plus (3C505) * By Craig Southeren, Juha Laiho and Philip Blundell * * 3c505.c This module implements an interface to the 3Com * Etherlink Plus (3c505) Ethernet card. Linux device * driver interface reverse engineered from the Linux 3C509 * device drivers. Some 3C505 information gleaned from * the Crynwr packet driver. Still this driver would not * be here without 3C505 technical reference provided by * 3Com. * * $Id: 3c505.c,v 1.10 1996/04/16 13:06:27 phil Exp $ * * Authors: Linux 3c505 device driver by * Craig Southeren, <craigs@ineluki.apana.org.au> * Final debugging by * Andrew Tridgell, <tridge@nimbus.anu.edu.au> * Auto irq/address, tuning, cleanup and v1.1.4+ kernel mods by * Juha Laiho, <jlaiho@ichaos.nullnet.fi> * Linux 3C509 driver by * Donald Becker, <becker@super.org> * (Now at <becker@scyld.com>) * Crynwr packet driver by * Krishnan Gopalan and Gregg Stefancik, * Clemson University Engineering Computer Operations. * Portions of the code have been adapted from the 3c505 * driver for NCSA Telnet by Bruce Orchard and later * modified by Warren Van Houten and krus@diku.dk. * 3C505 technical information provided by * Terry Murphy, of 3Com Network Adapter Division * Linux 1.3.0 changes by * Alan Cox <Alan.Cox@linux.org> * More debugging, DMA support, currently maintained by * Philip Blundell <Philip.Blundell@pobox.com> * Multicard/soft configurable dma channel/rev 2 hardware support * by Christopher Collins <ccollins@pcug.org.au> * Ethtool support (jgarzik), 11/17/2001 */
#define DRV_NAME "3c505" #define DRV_VERSION "1.10a"
/* Theory of operation: * * The 3c505 is quite an intelligent board. All communication with it is done * by means of Primary Command Blocks (PCBs); these are transferred using PIO * through the command register. The card has 256k of on-board RAM, which is * used to buffer received packets. It might seem at first that more buffers * are better, but in fact this isn't true. From my tests, it seems that * more than about 10 buffers are unnecessary, and there is a noticeable * performance hit in having more active on the card. So the majority of the * card's memory isn't, in fact, used. Sadly, the card only has one transmit * buffer and, short of loading our own firmware into it (which is what some * drivers resort to) there's nothing we can do about this. * * We keep up to 4 "receive packet" commands active on the board at a time. * When a packet comes in, so long as there is a receive command active, the * board will send us a "packet received" PCB and then add the data for that * packet to the DMA queue. If a DMA transfer is not already in progress, we * set one up to start uploading the data. We have to maintain a list of * backlogged receive packets, because the card may decide to tell us about * a newly-arrived packet at any time, and we may not be able to start a DMA * transfer immediately (ie one may already be going on). We can't NAK the * PCB, because then it would throw the packet away. * * Trying to send a PCB to the card at the wrong moment seems to have bad * effects. If we send it a transmit PCB while a receive DMA is happening, * it will just NAK the PCB and so we will have wasted our time. Worse, it * sometimes seems to interrupt the transfer. The majority of the low-level * code is protected by one huge semaphore -- "busy" -- which is set whenever * it probably isn't safe to do anything to the card. The receive routine * must gain a lock on "busy" before it can start a DMA transfer, and the * transmit routine must gain a lock before it sends the first PCB to the card. * The send_pcb() routine also has an internal semaphore to protect it against * being re-entered (which would be disastrous) -- this is needed because * several things can happen asynchronously (re-priming the receiver and * asking the card for statistics, for example). send_pcb() will also refuse * to talk to the card at all if a DMA upload is happening. The higher-level * networking code will reschedule a later retry if some part of the driver * is blocked. In practice, this doesn't seem to happen very often. */
/* This driver may now work with revision 2.x hardware, since all the read * operations on the HCR have been removed (we now keep our own softcopy). * But I don't have an old card to test it on. * * This has had the bad effect that the autoprobe routine is now a bit * less friendly to other devices. However, it was never very good. * before, so I doubt it will hurt anybody. */
/* The driver is a mess. I took Craig's and Juha's code, and hacked it firstly * to make it more reliable, and secondly to add DMA mode. Many things could * probably be done better; the concurrency protection is particularly awful. */
#include <linux/module.h>
#include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/ioport.h> #include <linux/spinlock.h> #include <linux/ethtool.h>
#include <asm/uaccess.h> #include <asm/bitops.h> #include <asm/io.h> #include <asm/dma.h>
#include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/init.h>
#include "3c505.h"
/********************************************************* * * define debug messages here as common strings to reduce space * *********************************************************/
static const char filename[] = __FILE__;
static const char timeout_msg[] = "*** timeout at %s:%s (line %d) ***\n"; #define TIMEOUT_MSG(lineno) \ printk(timeout_msg, filename,__FUNCTION__,(lineno))
static const char invalid_pcb_msg[] = "*** invalid pcb length %d at %s:%s (line %d) ***\n"; #define INVALID_PCB_MSG(len) \ printk(invalid_pcb_msg, (len),filename,__FUNCTION__,__LINE__)
static char search_msg[] __initdata = "%s: Looking for 3c505 adapter at address %#x...";
static char stilllooking_msg[] __initdata = "still looking...";
static char found_msg[] __initdata = "found.\n";
static char notfound_msg[] __initdata = "not found (reason = %d)\n";
static char couldnot_msg[] __initdata = "%s: 3c505 not found\n";
/********************************************************* * * various other debug stuff * *********************************************************/
#ifdef ELP_DEBUG static int elp_debug = ELP_DEBUG; #else static int elp_debug; #endif #define debug elp_debug
/* * 0 = no messages (well, some) * 1 = messages when high level commands performed * 2 = messages when low level commands performed * 3 = messages when interrupts received */
/***************************************************************** * * useful macros * *****************************************************************/
#ifndef TRUE #define TRUE 1 #endif
#ifndef FALSE #define FALSE 0 #endif
/***************************************************************** * * List of I/O-addresses we try to auto-sense * Last element MUST BE 0! *****************************************************************/
static int addr_list[] __initdata = {0x300, 0x280, 0x310, 0};
/* Dma Memory related stuff */
static unsigned long dma_mem_alloc(int size) { int order = get_order(size);
return __get_dma_pages(GFP_KERNEL, order); }
/***************************************************************** * * Functions for I/O (note the inline !) * *****************************************************************/
static inline unsigned char inb_status(unsigned int base_addr) { return inb(base_addr + PORT_STATUS); }
static inline int inb_command(unsigned int base_addr) { return inb(base_addr + PORT_COMMAND); }
static inline void outb_control(unsigned char val, struct net_device *dev) { outb(val, dev->base_addr + PORT_CONTROL); ((elp_device *)(dev->priv))->hcr_val = val; }
#define HCR_VAL(x) (((elp_device *)((x)->priv))->hcr_val)
static inline void outb_command(unsigned char val, unsigned int base_addr) { outb(val, base_addr + PORT_COMMAND); }
static inline unsigned int inw_data(unsigned int base_addr) { return inw(base_addr + PORT_DATA); }
static inline void outw_data(unsigned int val, unsigned int base_addr) { outw(val, base_addr + PORT_DATA); }
static inline unsigned int backlog_next(unsigned int n) { return (n + 1) % BACKLOG_SIZE; }
/***************************************************************** * * useful functions for accessing the adapter * *****************************************************************/
/* * use this routine when accessing the ASF bits as they are * changed asynchronously by the adapter */
/* get adapter PCB status */ #define GET_ASF(addr) \ (get_status(addr)&ASF_PCB_MASK)
static inline int get_status(unsigned int base_addr) { int timeout = jiffies + 10*HZ/100; register int stat1; do { stat1 = inb_status(base_addr); } while (stat1 != inb_status(base_addr) && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) TIMEOUT_MSG(__LINE__); return stat1; }
static inline void set_hsf(struct net_device *dev, int hsf) { cli(); outb_control((HCR_VAL(dev) & ~HSF_PCB_MASK) | hsf, dev); sti(); }
static int start_receive(struct net_device *, pcb_struct *);
inline static void adapter_reset(struct net_device *dev) { int timeout; elp_device *adapter = dev->priv; unsigned char orig_hcr = adapter->hcr_val;
outb_control(0, dev);
if (inb_status(dev->base_addr) & ACRF) { do { inb_command(dev->base_addr); timeout = jiffies + 2*HZ/100; while (time_before_eq(jiffies, timeout) && !(inb_status(dev->base_addr) & ACRF)); } while (inb_status(dev->base_addr) & ACRF); set_hsf(dev, HSF_PCB_NAK); } outb_control(adapter->hcr_val | ATTN | DIR, dev); timeout = jiffies + 1*HZ/100; while (time_before_eq(jiffies, timeout)); outb_control(adapter->hcr_val & ~ATTN, dev); timeout = jiffies + 1*HZ/100; while (time_before_eq(jiffies, timeout)); outb_control(adapter->hcr_val | FLSH, dev); timeout = jiffies + 1*HZ/100; while (time_before_eq(jiffies, timeout)); outb_control(adapter->hcr_val & ~FLSH, dev); timeout = jiffies + 1*HZ/100; while (time_before_eq(jiffies, timeout));
outb_control(orig_hcr, dev); if (!start_receive(dev, &adapter->tx_pcb)) printk("%s: start receive command failed \n", dev->name); }
/* Check to make sure that a DMA transfer hasn't timed out. This should * never happen in theory, but seems to occur occasionally if the card gets * prodded at the wrong time. */ static inline void check_3c505_dma(struct net_device *dev) { elp_device *adapter = dev->priv; if (adapter->dmaing && time_after(jiffies, adapter->current_dma.start_time + 10)) { unsigned long flags, f; printk("%s: DMA %s timed out, %d bytes left\n", dev->name, adapter->current_dma.direction ? "download" : "upload", get_dma_residue(dev->dma)); save_flags(flags); cli(); adapter->dmaing = 0; adapter->busy = 0; f=claim_dma_lock(); disable_dma(dev->dma); release_dma_lock(f); if (adapter->rx_active) adapter->rx_active--; outb_control(adapter->hcr_val & ~(DMAE | TCEN | DIR), dev); restore_flags(flags); } }
/* Primitive functions used by send_pcb() */ static inline unsigned int send_pcb_slow(unsigned int base_addr, unsigned char byte) { unsigned int timeout; outb_command(byte, base_addr); for (timeout = jiffies + 5*HZ/100; time_before(jiffies, timeout);) { if (inb_status(base_addr) & HCRE) return FALSE; } printk("3c505: send_pcb_slow timed out\n"); return TRUE; }
static inline unsigned int send_pcb_fast(unsigned int base_addr, unsigned char byte) { unsigned int timeout; outb_command(byte, base_addr); for (timeout = 0; timeout < 40000; timeout++) { if (inb_status(base_addr) & HCRE) return FALSE; } printk("3c505: send_pcb_fast timed out\n"); return TRUE; }
/* Check to see if the receiver needs restarting, and kick it if so */ static inline void prime_rx(struct net_device *dev) { elp_device *adapter = dev->priv; while (adapter->rx_active < ELP_RX_PCBS && netif_running(dev)) { if (!start_receive(dev, &adapter->itx_pcb)) break; } }
/***************************************************************** * * send_pcb * Send a PCB to the adapter. * * output byte to command reg --<--+ * wait until HCRE is non zero | * loop until all bytes sent -->--+ * set HSF1 and HSF2 to 1 * output pcb length * wait until ASF give ACK or NAK * set HSF1 and HSF2 to 0 * *****************************************************************/
/* This can be quite slow -- the adapter is allowed to take up to 40ms * to respond to the initial interrupt. * * We run initially with interrupts turned on, but with a semaphore set * so that nobody tries to re-enter this code. Once the first byte has * gone through, we turn interrupts off and then send the others (the * timeout is reduced to 500us). */
static int send_pcb(struct net_device *dev, pcb_struct * pcb) { int i; int timeout; elp_device *adapter = dev->priv;
check_3c505_dma(dev);
if (adapter->dmaing && adapter->current_dma.direction == 0) return FALSE;
/* Avoid contention */ if (test_and_set_bit(1, &adapter->send_pcb_semaphore)) { if (elp_debug >= 3) { printk("%s: send_pcb entered while threaded\n", dev->name); } return FALSE; } /* * load each byte into the command register and * wait for the HCRE bit to indicate the adapter * had read the byte */ set_hsf(dev, 0);
if (send_pcb_slow(dev->base_addr, pcb->command)) goto abort;
cli();
if (send_pcb_fast(dev->base_addr, pcb->length)) goto sti_abort;
for (i = 0; i < pcb->length; i++) { if (send_pcb_fast(dev->base_addr, pcb->data.raw[i])) goto sti_abort; }
outb_control(adapter->hcr_val | 3, dev); /* signal end of PCB */ outb_command(2 + pcb->length, dev->base_addr);
/* now wait for the acknowledgement */ sti();
for (timeout = jiffies + 5*HZ/100; time_before(jiffies, timeout);) { switch (GET_ASF(dev->base_addr)) { case ASF_PCB_ACK: adapter->send_pcb_semaphore = 0; return TRUE; break; case ASF_PCB_NAK: #ifdef ELP_DEBUG printk(KERN_DEBUG "%s: send_pcb got NAK\n", dev->name); #endif goto abort; break; } }
if (elp_debug >= 1) printk("%s: timeout waiting for PCB acknowledge (status %02x)\n", dev->name, inb_status(dev->base_addr));
sti_abort: sti(); abort: adapter->send_pcb_semaphore = 0; return FALSE; }
/***************************************************************** * * receive_pcb * Read a PCB from the adapter * * wait for ACRF to be non-zero ---<---+ * input a byte | * if ASF1 and ASF2 were not both one | * before byte was read, loop --->---+ * set HSF1 and HSF2 for ack * *****************************************************************/
static int receive_pcb(struct net_device *dev, pcb_struct * pcb) { int i, j; int total_length; int stat; int timeout;
elp_device *adapter = dev->priv;
set_hsf(dev, 0);
/* get the command code */ timeout = jiffies + 2*HZ/100; while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) { TIMEOUT_MSG(__LINE__); return FALSE; } pcb->command = inb_command(dev->base_addr);
/* read the data length */ timeout = jiffies + 3*HZ/100; while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) { TIMEOUT_MSG(__LINE__); printk("%s: status %02x\n", dev->name, stat); return FALSE; } pcb->length = inb_command(dev->base_addr);
if (pcb->length > MAX_PCB_DATA) { INVALID_PCB_MSG(pcb->length); adapter_reset(dev); return FALSE; } /* read the data */ cli(); i = 0; do { j = 0; while (((stat = get_status(dev->base_addr)) & ACRF) == 0 && j++ < 20000); pcb->data.raw[i++] = inb_command(dev->base_addr); if (i > MAX_PCB_DATA) INVALID_PCB_MSG(i); } while ((stat & ASF_PCB_MASK) != ASF_PCB_END && j < 20000); sti(); if (j >= 20000) { TIMEOUT_MSG(__LINE__); return FALSE; } /* woops, the last "data" byte was really the length! */ total_length = pcb->data.raw[--i];
/* safety check total length vs data length */ if (total_length != (pcb->length + 2)) { if (elp_debug >= 2) printk("%s: mangled PCB received\n", dev->name); set_hsf(dev, HSF_PCB_NAK); return FALSE; }
if (pcb->command == CMD_RECEIVE_PACKET_COMPLETE) { if (test_and_set_bit(0, (void *) &adapter->busy)) { if (backlog_next(adapter->rx_backlog.in) == adapter->rx_backlog.out) { set_hsf(dev, HSF_PCB_NAK); printk("%s: PCB rejected, transfer in progress and backlog full\n", dev->name); pcb->command = 0; return TRUE; } else { pcb->command = 0xff; } } } set_hsf(dev, HSF_PCB_ACK); return TRUE; }
/****************************************************** * * queue a receive command on the adapter so we will get an * interrupt when a packet is received. * ******************************************************/
static int start_receive(struct net_device *dev, pcb_struct * tx_pcb) { int status; elp_device *adapter = dev->priv;
if (elp_debug >= 3) printk("%s: restarting receiver\n", dev->name); tx_pcb->command = CMD_RECEIVE_PACKET; tx_pcb->length = sizeof(struct Rcv_pkt); tx_pcb->data.rcv_pkt.buf_seg = tx_pcb->data.rcv_pkt.buf_ofs = 0; /* Unused */ tx_pcb->data.rcv_pkt.buf_len = 1600; tx_pcb->data.rcv_pkt.timeout = 0; /* set timeout to zero */ status = send_pcb(dev, tx_pcb); if (status) adapter->rx_active++; return status; }
/****************************************************** * * extract a packet from the adapter * this routine is only called from within the interrupt * service routine, so no cli/sti calls are needed * note that the length is always assumed to be even * ******************************************************/
static void receive_packet(struct net_device *dev, int len) { int rlen; elp_device *adapter = dev->priv; void *target; struct sk_buff *skb; unsigned long flags;
rlen = (len + 1) & ~1; skb = dev_alloc_skb(rlen + 2);
if (!skb) { printk("%s: memory squeeze, dropping packet\n", dev->name); target = adapter->dma_buffer; adapter->current_dma.target = NULL; return; }
skb_reserve(skb, 2); target = skb_put(skb, rlen); if ((unsigned long)(target + rlen) >= MAX_DMA_ADDRESS) { adapter->current_dma.target = target; target = adapter->dma_buffer; } else { adapter->current_dma.target = NULL; }
/* if this happens, we die */ if (test_and_set_bit(0, (void *) &adapter->dmaing)) printk("%s: rx blocked, DMA in progress, dir %d\n", dev->name, adapter->current_dma.direction);
skb->dev = dev; adapter->current_dma.direction = 0; adapter->current_dma.length = rlen; adapter->current_dma.skb = skb; adapter->current_dma.start_time = jiffies;
outb_control(adapter->hcr_val | DIR | TCEN | DMAE, dev);
flags=claim_dma_lock(); disable_dma(dev->dma); clear_dma_ff(dev->dma); set_dma_mode(dev->dma, 0x04); /* dma read */ set_dma_addr(dev->dma, virt_to_bus(target)); set_dma_count(dev->dma, rlen); enable_dma(dev->dma); release_dma_lock(flags);
if (elp_debug >= 3) { printk("%s: rx DMA transfer started\n", dev->name); }
if (adapter->rx_active) adapter->rx_active--;
if (!adapter->busy) printk("%s: receive_packet called, busy not set.\n", dev->name); }
/****************************************************** * * interrupt handler * ******************************************************/
static void elp_interrupt(int irq, void *dev_id, struct pt_regs *reg_ptr) { int len; int dlen; int icount = 0; struct net_device *dev; elp_device *adapter; int timeout;
dev = dev_id; adapter = (elp_device *) dev->priv; spin_lock(&adapter->lock);
do { /* * has a DMA transfer finished? */ if (inb_status(dev->base_addr) & DONE) { if (!adapter->dmaing) { printk("%s: phantom DMA completed\n", dev->name); } if (elp_debug >= 3) { printk("%s: %s DMA complete, status %02x\n", dev->name, adapter->current_dma.direction ? "tx" : "rx", inb_status(dev->base_addr)); }
outb_control(adapter->hcr_val & ~(DMAE | TCEN | DIR), dev); if (adapter->current_dma.direction) { dev_kfree_skb_irq(adapter->current_dma.skb); } else { struct sk_buff *skb = adapter->current_dma.skb; if (skb) { if (adapter->current_dma.target) { /* have already done the skb_put() */ memcpy(adapter->current_dma.target, adapter->dma_buffer, adapter->current_dma.length); } skb->protocol = eth_type_trans(skb,dev); adapter->stats.rx_bytes += skb->len; netif_rx(skb); dev->last_rx = jiffies; } } adapter->dmaing = 0; if (adapter->rx_backlog.in != adapter->rx_backlog.out) { int t = adapter->rx_backlog.length[adapter->rx_backlog.out]; adapter->rx_backlog.out = backlog_next(adapter->rx_backlog.out); if (elp_debug >= 2) printk("%s: receiving backlogged packet (%d)\n", dev->name, t); receive_packet(dev, t); } else { adapter->busy = 0; } } else { /* has one timed out? */ check_3c505_dma(dev); }
/* * receive a PCB from the adapter */ timeout = jiffies + 3*HZ/100; while ((inb_status(dev->base_addr) & ACRF) != 0 && time_before(jiffies, timeout)) { if (receive_pcb(dev, &adapter->irx_pcb)) { switch (adapter->irx_pcb.command) { case 0: break; /* * received a packet - this must be handled fast */ case 0xff: case CMD_RECEIVE_PACKET_COMPLETE: /* if the device isn't open, don't pass packets up the stack */ if (!netif_running(dev)) break; len = adapter->irx_pcb.data.rcv_resp.pkt_len; dlen = adapter->irx_pcb.data.rcv_resp.buf_len; if (adapter->irx_pcb.data.rcv_resp.timeout != 0) { printk(KERN_ERR "%s: interrupt - packet not received correctly\n", dev->name); } else { if (elp_debug >= 3) { printk("%s: interrupt - packet received of length %i (%i)\n", dev->name, len, dlen); } if (adapter->irx_pcb.command == 0xff) { if (elp_debug >= 2) printk("%s: adding packet to backlog (len = %d)\n", dev->name, dlen); adapter->rx_backlog.length[adapter->rx_backlog.in] = dlen; adapter->rx_backlog.in = backlog_next(adapter->rx_backlog.in); } else { receive_packet(dev, dlen); } if (elp_debug >= 3) printk("%s: packet received\n", dev->name); } break;
/* * 82586 configured correctly */ case CMD_CONFIGURE_82586_RESPONSE: adapter->got[CMD_CONFIGURE_82586] = 1; if (elp_debug >= 3) printk("%s: interrupt - configure response received\n", dev->name); break;
/* * Adapter memory configuration */ case CMD_CONFIGURE_ADAPTER_RESPONSE: adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] = 1; if (elp_debug >= 3) printk("%s: Adapter memory configuration %s.\n", dev->name, adapter->irx_pcb.data.failed ? "failed" : "succeeded"); break;
/* * Multicast list loading */ case CMD_LOAD_MULTICAST_RESPONSE: adapter->got[CMD_LOAD_MULTICAST_LIST] = 1; if (elp_debug >= 3) printk("%s: Multicast address list loading %s.\n", dev->name, adapter->irx_pcb.data.failed ? "failed" : "succeeded"); break;
/* * Station address setting */ case CMD_SET_ADDRESS_RESPONSE: adapter->got[CMD_SET_STATION_ADDRESS] = 1; if (elp_debug >= 3) printk("%s: Ethernet address setting %s.\n", dev->name, adapter->irx_pcb.data.failed ? "failed" : "succeeded"); break;
/* * received board statistics */ case CMD_NETWORK_STATISTICS_RESPONSE: adapter->stats.rx_packets += adapter->irx_pcb.data.netstat.tot_recv; adapter->stats.tx_packets += adapter->irx_pcb.data.netstat.tot_xmit; adapter->stats.rx_crc_errors += adapter->irx_pcb.data.netstat.err_CRC; adapter->stats.rx_frame_errors += adapter->irx_pcb.data.netstat.err_align; adapter->stats.rx_fifo_errors += adapter->irx_pcb.data.netstat.err_ovrrun; adapter->stats.rx_over_errors += adapter->irx_pcb.data.netstat.err_res; adapter->got[CMD_NETWORK_STATISTICS] = 1; if (elp_debug >= 3) printk("%s: interrupt - statistics response received\n", dev->name); break;
/* * sent a packet */ case CMD_TRANSMIT_PACKET_COMPLETE: if (elp_debug >= 3) printk("%s: interrupt - packet sent\n", dev->name); if (!netif_running(dev)) break; switch (adapter->irx_pcb.data.xmit_resp.c_stat) { case 0xffff: adapter->stats.tx_aborted_errors++; printk(KERN_INFO "%s: transmit timed out, network cable problem?\n", dev->name); break; case 0xfffe: adapter->stats.tx_fifo_errors++; printk(KERN_INFO "%s: transmit timed out, FIFO underrun\n", dev->name); break; } netif_wake_queue(dev); break;
/* * some unknown PCB */ default: printk(KERN_DEBUG "%s: unknown PCB received - %2.2x\n", dev->name, adapter->irx_pcb.command); break; } } else { printk("%s: failed to read PCB on interrupt\n", dev->name); adapter_reset(dev); } }
} while (icount++ < 5 && (inb_status(dev->base_addr) & (ACRF | DONE)));
prime_rx(dev);
/* * indicate no longer in interrupt routine */ spin_unlock(&adapter->lock); }
/****************************************************** * * open the board * ******************************************************/
static int elp_open(struct net_device *dev) { elp_device *adapter; int retval;
adapter = dev->priv;
if (elp_debug >= 3) printk("%s: request to open device\n", dev->name);
/* * make sure we actually found the device */ if (adapter == NULL) { printk("%s: Opening a non-existent physical device\n", dev->name); return -EAGAIN; } /* * disable interrupts on the board */ outb_control(0, dev);
/* * clear any pending interrupts */ inb_command(dev->base_addr); adapter_reset(dev);
/* * no receive PCBs active */ adapter->rx_active = 0;
adapter->busy = 0; adapter->send_pcb_semaphore = 0; adapter->rx_backlog.in = 0; adapter->rx_backlog.out = 0; spin_lock_init(&adapter->lock);
/* * install our interrupt service routine */ if ((retval = request_irq(dev->irq, &elp_interrupt, 0, dev->name, dev))) { printk(KERN_ERR "%s: could not allocate IRQ%d\n", dev->name, dev->irq); return retval; } if ((retval = request_dma(dev->dma, dev->name))) { free_irq(dev->irq, dev); printk(KERN_ERR "%s: could not allocate DMA%d channel\n", dev->name, dev->dma); return retval; } adapter->dma_buffer = (void *) dma_mem_alloc(DMA_BUFFER_SIZE); if (!adapter->dma_buffer) { printk(KERN_ERR "%s: could not allocate DMA buffer\n", dev->name); free_dma(dev->dma); free_irq(dev->irq, dev); return -ENOMEM; } adapter->dmaing = 0;
/* * enable interrupts on the board */ outb_control(CMDE, dev);
/* * configure adapter memory: we need 10 multicast addresses, default==0 */ if (elp_debug >= 3) printk(KERN_DEBUG "%s: sending 3c505 memory configuration command\n", dev->name); adapter->tx_pcb.command = CMD_CONFIGURE_ADAPTER_MEMORY; adapter->tx_pcb.data.memconf.cmd_q = 10; adapter->tx_pcb.data.memconf.rcv_q = 20; adapter->tx_pcb.data.memconf.mcast = 10; adapter->tx_pcb.data.memconf.frame = 20; adapter->tx_pcb.data.memconf.rcv_b = 20; adapter->tx_pcb.data.memconf.progs = 0; adapter->tx_pcb.length = sizeof(struct Memconf); adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] = 0; if (!send_pcb(dev, &adapter->tx_pcb)) printk("%s: couldn't send memory configuration command\n", dev->name); else { int timeout = jiffies + TIMEOUT; while (adapter->got[CMD_CONFIGURE_ADAPTER_MEMORY] == 0 && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) TIMEOUT_MSG(__LINE__); }
/* * configure adapter to receive broadcast messages and wait for response */ if (elp_debug >= 3) printk("%s: sending 82586 configure command\n", dev->name); adapter->tx_pcb.command = CMD_CONFIGURE_82586; adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD; adapter->tx_pcb.length = 2; adapter->got[CMD_CONFIGURE_82586] = 0; if (!send_pcb(dev, &adapter->tx_pcb)) printk("%s: couldn't send 82586 configure command\n", dev->name); else { int timeout = jiffies + TIMEOUT; while (adapter->got[CMD_CONFIGURE_82586] == 0 && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) TIMEOUT_MSG(__LINE__); }
/* enable burst-mode DMA */ /* outb(0x1, dev->base_addr + PORT_AUXDMA); */
/* * queue receive commands to provide buffering */ prime_rx(dev); if (elp_debug >= 3) printk("%s: %d receive PCBs active\n", dev->name, adapter->rx_active);
/* * device is now officially open! */
netif_start_queue(dev); return 0; }
/****************************************************** * * send a packet to the adapter * ******************************************************/
static int send_packet(struct net_device *dev, struct sk_buff *skb) { elp_device *adapter = dev->priv; unsigned long target; unsigned long flags;
/* * make sure the length is even and no shorter than 60 bytes */ unsigned int nlen = (((skb->len < 60) ? 60 : skb->len) + 1) & (~1);
if (test_and_set_bit(0, (void *) &adapter->busy)) { if (elp_debug >= 2) printk("%s: transmit blocked\n", dev->name); return FALSE; }
adapter->stats.tx_bytes += nlen; /* * send the adapter a transmit packet command. Ignore segment and offset * and make sure the length is even */ adapter->tx_pcb.command = CMD_TRANSMIT_PACKET; adapter->tx_pcb.length = sizeof(struct Xmit_pkt); adapter->tx_pcb.data.xmit_pkt.buf_ofs = adapter->tx_pcb.data.xmit_pkt.buf_seg = 0; /* Unused */ adapter->tx_pcb.data.xmit_pkt.pkt_len = nlen;
if (!send_pcb(dev, &adapter->tx_pcb)) { adapter->busy = 0; return FALSE; } /* if this happens, we die */ if (test_and_set_bit(0, (void *) &adapter->dmaing)) printk("%s: tx: DMA %d in progress\n", dev->name, adapter->current_dma.direction);
adapter->current_dma.direction = 1; adapter->current_dma.start_time = jiffies;
if ((unsigned long)(skb->data + nlen) >= MAX_DMA_ADDRESS) { memcpy(adapter->dma_buffer, skb->data, nlen); target = virt_to_bus(adapter->dma_buffer); } else { target = virt_to_bus(skb->data); } adapter->current_dma.skb = skb;
flags=claim_dma_lock(); disable_dma(dev->dma); clear_dma_ff(dev->dma); set_dma_mode(dev->dma, 0x48); /* dma memory -> io */ set_dma_addr(dev->dma, target); set_dma_count(dev->dma, nlen); outb_control(adapter->hcr_val | DMAE | TCEN, dev); enable_dma(dev->dma); release_dma_lock(flags); if (elp_debug >= 3) printk("%s: DMA transfer started\n", dev->name);
return TRUE; }
/* * The upper layer thinks we timed out */ static void elp_timeout(struct net_device *dev) { elp_device *adapter = dev->priv; int stat;
stat = inb_status(dev->base_addr); printk(KERN_WARNING "%s: transmit timed out, lost %s?\n", dev->name, (stat & ACRF) ? "interrupt" : "command"); if (elp_debug >= 1) printk("%s: status %#02x\n", dev->name, stat); dev->trans_start = jiffies; adapter->stats.tx_dropped++; netif_wake_queue(dev); }
/****************************************************** * * start the transmitter * return 0 if sent OK, else return 1 * ******************************************************/
static int elp_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned long flags; elp_device *adapter = dev->priv; spin_lock_irqsave(&adapter->lock, flags); check_3c505_dma(dev);
if (elp_debug >= 3) printk("%s: request to send packet of length %d\n", dev->name, (int) skb->len);
netif_stop_queue(dev); /* * send the packet at skb->data for skb->len */ if (!send_packet(dev, skb)) { if (elp_debug >= 2) { printk("%s: failed to transmit packet\n", dev->name); } spin_unlock_irqrestore(&adapter->lock, flags); return 1; } if (elp_debug >= 3) printk("%s: packet of length %d sent\n", dev->name, (int) skb->len);
/* * start the transmit timeout */ dev->trans_start = jiffies;
prime_rx(dev); spin_unlock_irqrestore(&adapter->lock, flags); netif_start_queue(dev); return 0; }
/****************************************************** * * return statistics on the board * ******************************************************/
static struct net_device_stats *elp_get_stats(struct net_device *dev) { elp_device *adapter = (elp_device *) dev->priv;
if (elp_debug >= 3) printk("%s: request for stats\n", dev->name);
/* If the device is closed, just return the latest stats we have, - we cannot ask from the adapter without interrupts */ if (!netif_running(dev)) return &adapter->stats;
/* send a get statistics command to the board */ adapter->tx_pcb.command = CMD_NETWORK_STATISTICS; adapter->tx_pcb.length = 0; adapter->got[CMD_NETWORK_STATISTICS] = 0; if (!send_pcb(dev, &adapter->tx_pcb)) printk("%s: couldn't send get statistics command\n", dev->name); else { int timeout = jiffies + TIMEOUT; while (adapter->got[CMD_NETWORK_STATISTICS] == 0 && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) { TIMEOUT_MSG(__LINE__); return &adapter->stats; } }
/* statistics are now up to date */ return &adapter->stats; }
/****************************************************** * * close the board * ******************************************************/
static int elp_close(struct net_device *dev) { elp_device *adapter;
adapter = dev->priv;
if (elp_debug >= 3) printk("%s: request to close device\n", dev->name);
netif_stop_queue(dev);
/* Someone may request the device statistic information even when * the interface is closed. The following will update the statistics * structure in the driver, so we'll be able to give current statistics. */ (void) elp_get_stats(dev);
/* * disable interrupts on the board */ outb_control(0, dev);
/* * release the IRQ */ free_irq(dev->irq, dev);
free_dma(dev->dma); free_pages((unsigned long) adapter->dma_buffer, get_order(DMA_BUFFER_SIZE));
return 0; }
/************************************************************ * * Set multicast list * num_addrs==0: clear mc_list * num_addrs==-1: set promiscuous mode * num_addrs>0: set mc_list * ************************************************************/
static void elp_set_mc_list(struct net_device *dev) { elp_device *adapter = (elp_device *) dev->priv; struct dev_mc_list *dmi = dev->mc_list; int i; unsigned long flags;
if (elp_debug >= 3) printk("%s: request to set multicast list\n", dev->name);
spin_lock_irqsave(&adapter->lock, flags); if (!(dev->flags & (IFF_PROMISC | IFF_ALLMULTI))) { /* send a "load multicast list" command to the board, max 10 addrs/cmd */ /* if num_addrs==0 the list will be cleared */ adapter->tx_pcb.command = CMD_LOAD_MULTICAST_LIST; adapter->tx_pcb.length = 6 * dev->mc_count; for (i = 0; i < dev->mc_count; i++) { memcpy(adapter->tx_pcb.data.multicast[i], dmi->dmi_addr, 6); dmi = dmi->next; } adapter->got[CMD_LOAD_MULTICAST_LIST] = 0; if (!send_pcb(dev, &adapter->tx_pcb)) printk("%s: couldn't send set_multicast command\n", dev->name); else { int timeout = jiffies + TIMEOUT; while (adapter->got[CMD_LOAD_MULTICAST_LIST] == 0 && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) { TIMEOUT_MSG(__LINE__); } } if (dev->mc_count) adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD | RECV_MULTI; else /* num_addrs == 0 */ adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_BROAD; } else adapter->tx_pcb.data.configure = NO_LOOPBACK | RECV_PROMISC; /* * configure adapter to receive messages (as specified above) * and wait for response */ if (elp_debug >= 3) printk("%s: sending 82586 configure command\n", dev->name); adapter->tx_pcb.command = CMD_CONFIGURE_82586; adapter->tx_pcb.length = 2; adapter->got[CMD_CONFIGURE_82586] = 0; if (!send_pcb(dev, &adapter->tx_pcb)) { spin_unlock_irqrestore(&adapter->lock, flags); printk("%s: couldn't send 82586 configure command\n", dev->name); } else { int timeout = jiffies + TIMEOUT; spin_unlock_irqrestore(&adapter->lock, flags); while (adapter->got[CMD_CONFIGURE_82586] == 0 && time_before(jiffies, timeout)); if (time_after_eq(jiffies, timeout)) TIMEOUT_MSG(__LINE__); } }
/** * netdev_ethtool_ioctl: Handle network interface SIOCETHTOOL ioctls * @dev: network interface on which out-of-band action is to be performed * @useraddr: userspace address to which data is to be read and returned * * Process the various commands of the SIOCETHTOOL interface. */
static int netdev_ethtool_ioctl (struct net_device *dev, void *useraddr) { u32 ethcmd;
/* dev_ioctl() in ../../net/core/dev.c has already checked capable(CAP_NET_ADMIN), so don't bother with that here. */
if (get_user(ethcmd, (u32 *)useraddr)) return -EFAULT;
switch (ethcmd) {
case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = { ETHTOOL_GDRVINFO }; strcpy (info.driver, DRV_NAME); strcpy (info.version, DRV_VERSION); sprintf(info.bus_info, "ISA 0x%lx", dev->base_addr); if (copy_to_user (useraddr, &info, sizeof (info))) return -EFAULT; return 0; }
/* get message-level */ case ETHTOOL_GMSGLVL: { struct ethtool_value edata = {ETHTOOL_GMSGLVL}; edata.data = debug; if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } /* set message-level */ case ETHTOOL_SMSGLVL: { struct ethtool_value edata; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; debug = edata.data; return 0; }
default: break; }
return -EOPNOTSUPP; }
/** * netdev_ioctl: Handle network interface ioctls * @dev: network interface on which out-of-band action is to be performed * @rq: user request data * @cmd: command issued by user * * Process the various out-of-band ioctls passed to this driver. */
static int netdev_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) { int rc = 0;
switch (cmd) { case SIOCETHTOOL: rc = netdev_ethtool_ioctl(dev, (void *) rq->ifr_data); break;
default: rc = -EOPNOTSUPP; break; }
return rc; }
/****************************************************** * * initialise Etherlink Plus board * ******************************************************/
static inline void elp_init(struct net_device *dev) { elp_device *adapter = dev->priv;
/* * set ptrs to various functions */ dev->open = elp_open; /* local */ dev->stop = elp_close; /* local */ dev->get_stats = elp_get_stats; /* local */ dev->hard_start_xmit = elp_start_xmit; /* local */ dev->tx_timeout = elp_timeout; /* local */ dev->watchdog_timeo = 10*HZ; dev->set_multicast_list = elp_set_mc_list; /* local */ dev->do_ioctl = netdev_ioctl; /* local */
/* Setup the generic properties */ ether_setup(dev);
/* * setup ptr to adapter specific information */ memset(&(adapter->stats), 0, sizeof(struct net_device_stats));
/* * memory information */ dev->mem_start = dev->mem_end = dev->rmem_end = dev->rmem_start = 0; }
/************************************************************ * * A couple of tests to see if there's 3C505 or not * Called only by elp_autodetect ************************************************************/
static int __init elp_sense(struct net_device *dev) { int timeout; int addr = dev->base_addr; const char *name = dev->name; long flags; byte orig_HSR;
if (!request_region(addr, ELP_IO_EXTENT, "3c505")) return -ENODEV;
orig_HSR = inb_status(addr);
if (elp_debug > 0) printk(search_msg, name, addr);
if (orig_HSR == 0xff) { if (elp_debug > 0) printk(notfound_msg, 1); goto out; } /* Enable interrupts - we need timers! */ save_flags(flags); sti();
/* Wait for a while; the adapter may still be booting up */ if (elp_debug > 0) printk(stilllooking_msg);
if (orig_HSR & DIR) { /* If HCR.DIR is up, we pull it down. HSR.DIR should follow. */ outb(0, dev->base_addr + PORT_CONTROL); timeout = jiffies + 30*HZ/100; while (time_before(jiffies, timeout)); restore_flags(flags); if (inb_status(addr) & DIR) { if (elp_debug > 0) printk(notfound_msg, 2); goto out; } } else { /* If HCR.DIR is down, we pull it up. HSR.DIR should follow. */ outb(DIR, dev->base_addr + PORT_CONTROL); timeout = jiffies + 30*HZ/100; while (time_before(jiffies, timeout)); restore_flags(flags); if (!(inb_status(addr) & DIR)) { if (elp_debug > 0) printk(notfound_msg, 3); goto out; } } /* * It certainly looks like a 3c505. */ if (elp_debug > 0) printk(found_msg);
return 0; out: release_region(addr, ELP_IO_EXTENT); return -ENODEV; }
/************************************************************* * * Search through addr_list[] and try to find a 3C505 * Called only by eplus_probe *************************************************************/
static int __init elp_autodetect(struct net_device *dev) { int idx = 0;
/* if base address set, then only check that address otherwise, run through the table */ if (dev->base_addr != 0) { /* dev->base_addr == 0 ==> plain autodetect */ if (elp_sense(dev) == 0) return dev->base_addr; } else while ((dev->base_addr = addr_list[idx++])) { if (elp_sense(dev) == 0) return dev->base_addr; }
/* could not find an adapter */ if (elp_debug > 0) printk(couldnot_msg, dev->name);
return 0; /* Because of this, the layer above will return -ENODEV */ }
/****************************************************** * * probe for an Etherlink Plus board at the specified address * ******************************************************/
/* There are three situations we need to be able to detect here:
* a) the card is idle * b) the card is still booting up * c) the card is stuck in a strange state (some DOS drivers do this) * * In case (a), all is well. In case (b), we wait 10 seconds to see if the * card finishes booting, and carry on if so. In case (c), we do a hard reset, * loop round, and hope for the best. * * This is all very unpleasant, but hopefully avoids the problems with the old * probe code (which had a 15-second delay if the card was idle, and didn't * work at all if it was in a weird state). */
int __init elplus_probe(struct net_device *dev) { elp_device *adapter; int i, tries, tries1, timeout, okay; unsigned long cookie = 0;
SET_MODULE_OWNER(dev);
/* * setup adapter structure */
dev->base_addr = elp_autodetect(dev); if (!(dev->base_addr)) return -ENODEV;
/* * setup ptr to adapter specific information */ adapter = (elp_device *) (dev->priv = kmalloc(sizeof(elp_device), GFP_KERNEL)); if (adapter == NULL) { printk("%s: out of memory\n", dev->name); return -ENODEV; }
adapter->send_pcb_semaphore = 0;
for (tries1 = 0; tries1 < 3; tries1++) { outb_control((adapter->hcr_val | CMDE) & ~DIR, dev); /* First try to write just one byte, to see if the card is * responding at all normally. */ timeout = jiffies + 5*HZ/100; okay = 0; while (time_before(jiffies, timeout) && !(inb_status(dev->base_addr) & HCRE)); if ((inb_status(dev->base_addr) & HCRE)) { outb_command(0, dev->base_addr); /* send a spurious byte */ timeout = jiffies + 5*HZ/100; while (time_before(jiffies, timeout) && !(inb_status(dev->base_addr) & HCRE)); if (inb_status(dev->base_addr) & HCRE) okay = 1; } if (!okay) { /* Nope, it's ignoring the command register. This means that * either it's still booting up, or it's died. */ printk("%s: command register wouldn't drain, ", dev->name); if ((inb_status(dev->base_addr) & 7) == 3) { /* If the adapter status is 3, it *could* still be booting. * Give it the benefit of the doubt for 10 seconds. */ printk("assuming 3c505 still starting\n"); timeout = jiffies + 10*HZ; while (time_before(jiffies, timeout) && (inb_status(dev->base_addr) & 7)); if (inb_status(dev->base_addr) & 7) { printk("%s: 3c505 failed to start\n", dev->name); } else { okay = 1; /* It started */ } } else { /* Otherwise, it must just be in a strange * state. We probably need to kick it. */ printk("3c505 is sulking\n"); } } for (tries = 0; tries < 5 && okay; tries++) {
/* * Try to set the Ethernet address, to make sure that the board * is working. */ adapter->tx_pcb.command = CMD_STATION_ADDRESS; adapter->tx_pcb.length = 0; cookie = probe_irq_on(); if (!send_pcb(dev, &adapter->tx_pcb)) { printk("%s: could not send first PCB\n", dev->name); probe_irq_off(cookie); continue; } if (!receive_pcb(dev, &adapter->rx_pcb)) { printk("%s: could not read first PCB\n", dev->name); probe_irq_off(cookie); continue; } if ((adapter->rx_pcb.command != CMD_ADDRESS_RESPONSE) || (adapter->rx_pcb.length != 6)) { printk("%s: first PCB wrong (%d, %d)\n", dev->name, adapter->rx_pcb.command, adapter->rx_pcb.length); probe_irq_off(cookie); continue; } goto okay; } /* It's broken. Do a hard reset to re-initialise the board, * and try again. */ printk(KERN_INFO "%s: resetting adapter\n", dev->name); outb_control(adapter->hcr_val | FLSH | ATTN, dev); outb_control(adapter->hcr_val & ~(FLSH | ATTN), dev); } printk("%s: failed to initialise 3c505\n", dev->name); release_region(dev->base_addr, ELP_IO_EXTENT); return -ENODEV;
okay: if (dev->irq) { /* Is there a preset IRQ? */ int rpt = probe_irq_off(cookie); if (dev->irq != rpt) { printk("%s: warning, irq %d configured but %d detected\n", dev->name, dev->irq, rpt); } /* if dev->irq == probe_irq_off(cookie), all is well */ } else /* No preset IRQ; just use what we can detect */ dev->irq = probe_irq_off(cookie); switch (dev->irq) { /* Legal, sane? */ case 0: printk("%s: IRQ probe failed: check 3c505 jumpers.\n", dev->name); return -ENODEV; case 1: case 6: case 8: case 13: printk("%s: Impossible IRQ %d reported by probe_irq_off().\n", dev->name, dev->irq); return -ENODEV; } /* * Now we have the IRQ number so we can disable the interrupts from * the board until the board is opened. */ outb_control(adapter->hcr_val & ~CMDE, dev);
/* * copy Ethernet address into structure */ for (i = 0; i < 6; i++) dev->dev_addr[i] = adapter->rx_pcb.data.eth_addr[i];
/* find a DMA channel */ if (!dev->dma) { if (dev->mem_start) { dev->dma = dev->mem_start & 7; } else { printk(KERN_WARNING "%s: warning, DMA channel not specified, using default\n", dev->name); dev->dma = ELP_DMA; } }
/* * print remainder of startup message */ printk("%s: 3c505 at %#lx, irq %d, dma %d, ", dev->name, dev->base_addr, dev->irq, dev->dma); printk("addr %02x:%02x:%02x:%02x:%02x:%02x, ", dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
/* * read more information from the adapter */
adapter->tx_pcb.command = CMD_ADAPTER_INFO; adapter->tx_pcb.length = 0; if (!send_pcb(dev, &adapter->tx_pcb) || !receive_pcb(dev, &adapter->rx_pcb) || (adapter->rx_pcb.command != CMD_ADAPTER_INFO_RESPONSE) || (adapter->rx_pcb.length != 10)) { printk("not responding to second PCB\n"); } printk("rev %d.%d, %dk\n", adapter->rx_pcb.data.info.major_vers, adapter->rx_pcb.data.info.minor_vers, adapter->rx_pcb.data.info.RAM_sz);
/* * reconfigure the adapter memory to better suit our purposes */ adapter->tx_pcb.command = CMD_CONFIGURE_ADAPTER_MEMORY; adapter->tx_pcb.length = 12; adapter->tx_pcb.data.memconf.cmd_q = 8; adapter->tx_pcb.data.memconf.rcv_q = 8; adapter->tx_pcb.data.memconf.mcast = 10; adapter->tx_pcb.data.memconf.frame = 10; adapter->tx_pcb.data.memconf.rcv_b = 10; adapter->tx_pcb.data.memconf.progs = 0; if (!send_pcb(dev, &adapter->tx_pcb) || !receive_pcb(dev, &adapter->rx_pcb) || (adapter->rx_pcb.command != CMD_CONFIGURE_ADAPTER_RESPONSE) || (adapter->rx_pcb.length != 2)) { printk("%s: could not configure adapter memory\n", dev->name); } if (adapter->rx_pcb.data.configure) { printk("%s: adapter configuration failed\n", dev->name); }
/* * initialise the device */ elp_init(dev);
return 0; }
#ifdef MODULE static struct net_device dev_3c505[ELP_MAX_CARDS]; static int io[ELP_MAX_CARDS]; static int irq[ELP_MAX_CARDS]; static int dma[ELP_MAX_CARDS]; MODULE_PARM(io, "1-" __MODULE_STRING(ELP_MAX_CARDS) "i"); MODULE_PARM(irq, "1-" __MODULE_STRING(ELP_MAX_CARDS) "i"); MODULE_PARM(dma, "1-" __MODULE_STRING(ELP_MAX_CARDS) "i"); MODULE_PARM_DESC(io, "EtherLink Plus I/O base address(es)"); MODULE_PARM_DESC(irq, "EtherLink Plus IRQ number(s) (assigned)"); MODULE_PARM_DESC(dma, "EtherLink Plus DMA channel(s)");
int init_module(void) { int this_dev, found = 0;
for (this_dev = 0; this_dev < ELP_MAX_CARDS; this_dev++) { struct net_device *dev = &dev_3c505[this_dev]; dev->irq = irq[this_dev]; dev->base_addr = io[this_dev]; dev->init = elplus_probe; if (dma[this_dev]) { dev->dma = dma[this_dev]; } else { dev->dma = ELP_DMA; printk(KERN_WARNING "3c505.c: warning, using default DMA channel,\n"); } if (io[this_dev] == 0) { if (this_dev) break; printk(KERN_NOTICE "3c505.c: module autoprobe not recommended, give io=xx.\n"); } if (register_netdev(dev) != 0) { printk(KERN_WARNING "3c505.c: Failed to register card at 0x%x.\n", io[this_dev]); if (found != 0) return 0; return -ENXIO; } found++; } return 0; }
void cleanup_module(void) { int this_dev;
for (this_dev = 0; this_dev < ELP_MAX_CARDS; this_dev++) { struct net_device *dev = &dev_3c505[this_dev]; if (dev->priv != NULL) { unregister_netdev(dev); kfree(dev->priv); dev->priv = NULL; release_region(dev->base_addr, ELP_IO_EXTENT); } } }
#endif /* MODULE */ MODULE_LICENSE("GPL");
|