Viewing file: lmc_main.c (70.07 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Copyright (c) 1997-2000 LAN Media Corporation (LMC) * All rights reserved. www.lanmedia.com * * This code is written by: * Andrew Stanley-Jones (asj@cban.com) * Rob Braun (bbraun@vix.com), * Michael Graff (explorer@vix.com) and * Matt Thomas (matt@3am-software.com). * * With Help By: * David Boggs * Ron Crane * Allan Cox * * This software may be used and distributed according to the terms * of the GNU General Public License version 2, incorporated herein by reference. * * Driver for the LanMedia LMC5200, LMC5245, LMC1000, LMC1200 cards. * * To control link specific options lmcctl is required. * It can be obtained from ftp.lanmedia.com. * * Linux driver notes: * Linux uses the device struct lmc_private to pass private information * arround. * * The initialization portion of this driver (the lmc_reset() and the * lmc_dec_reset() functions, as well as the led controls and the * lmc_initcsrs() functions. * * The watchdog function runs every second and checks to see if * we still have link, and that the timing source is what we expected * it to be. If link is lost, the interface is marked down, and * we no longer can transmit. * */
/* $Id: lmc_main.c,v 1.36 2000/04/11 05:25:25 asj Exp $ */
#include <linux/version.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/delay.h> #include <asm/segment.h> #include <linux/init.h>
#if LINUX_VERSION_CODE < 0x20155 #include <linux/bios32.h> #endif
#include <linux/in.h> #include <linux/if_arp.h> #include <asm/processor.h> /* Processor type for cache alignment. */ #include <asm/bitops.h> #include <asm/io.h> #include <asm/dma.h>
#include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <net/syncppp.h> #include <linux/inet.h>
#if LINUX_VERSION_CODE >= 0x20200 #include <asm/uaccess.h> //#include <asm/spinlock.h> #else /* 2.0 kernel */ #define ARPHRD_HDLC 513 #endif
#include <linux/module.h>
#define DRIVER_MAJOR_VERSION 1 #define DRIVER_MINOR_VERSION 34 #define DRIVER_SUB_VERSION 0
#define DRIVER_VERSION ((DRIVER_MAJOR_VERSION << 8) + DRIVER_MINOR_VERSION)
#include "lmc_ver.h" #include "lmc.h" #include "lmc_var.h" #include "lmc_ioctl.h" #include "lmc_debug.h" #include "lmc_proto.h"
static int Lmc_Count = 0; static struct net_device *Lmc_root_dev = NULL; static u8 cards_found = 0;
static int lmc_first_load = 0;
int LMC_PKT_BUF_SZ = 1542;
#ifdef MODULE static struct pci_device_id lmc_pci_tbl[] __devinitdata = { { 0x1011, 0x009, 0x1379, PCI_ANY_ID, 0, 0, 0}, { 0, } };
MODULE_DEVICE_TABLE(pci, lmc_pci_tbl);
MODULE_LICENSE("GPL"); #endif
int lmc_probe_fake(struct net_device *dev); static struct net_device *lmc_probe1(struct net_device *dev, unsigned long ioaddr, unsigned int irq, int chip_id, int subdevice, int board_idx); static int lmc_start_xmit(struct sk_buff *skb, struct net_device *dev); static int lmc_start_xmit(struct sk_buff *skb, struct net_device *dev); static int lmc_rx (struct net_device *dev); static int lmc_open(struct net_device *dev); static int lmc_close(struct net_device *dev); static struct net_device_stats *lmc_get_stats(struct net_device *dev); static void lmc_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static int lmc_set_config(struct net_device *dev, struct ifmap *map); static void lmc_initcsrs(lmc_softc_t * const sc, lmc_csrptr_t csr_base, size_t csr_size); static void lmc_softreset(lmc_softc_t * const); static void lmc_running_reset(struct net_device *dev); static int lmc_ifdown(struct net_device * const); static void lmc_watchdog(unsigned long data); static int lmc_init(struct net_device * const); static void lmc_reset(lmc_softc_t * const sc); static void lmc_dec_reset(lmc_softc_t * const sc); #if LINUX_VERSION_CODE >= 0x20363 static void lmc_driver_timeout(struct net_device *dev); int lmc_setup(void); #endif
/* * linux reserves 16 device specific IOCTLs. We call them * LMCIOC* to control various bits of our world. */ int lmc_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd) /*fold00*/ { lmc_softc_t *sc; lmc_ctl_t ctl; int ret; u_int16_t regVal; unsigned long flags;
struct sppp *sp;
ret = -EOPNOTSUPP;
sc = dev->priv;
lmc_trace(dev, "lmc_ioctl in");
/* * Most functions mess with the structure * Disable interrupts while we do the polling */ spin_lock_irqsave(&sc->lmc_lock, flags);
switch (cmd) { /* * Return current driver state. Since we keep this up * To date internally, just copy this out to the user. */ case LMCIOCGINFO: /*fold01*/ LMC_COPY_TO_USER(ifr->ifr_data, &sc->ictl, sizeof (lmc_ctl_t)); ret = 0; break;
case LMCIOCSINFO: /*fold01*/ sp = &((struct ppp_device *) dev)->sppp; if (!suser ()) { ret = -EPERM; break; }
if(dev->flags & IFF_UP){ ret = -EBUSY; break; }
LMC_COPY_FROM_USER(&ctl, ifr->ifr_data, sizeof (lmc_ctl_t));
sc->lmc_media->set_status (sc, &ctl);
if(ctl.crc_length != sc->ictl.crc_length) { sc->lmc_media->set_crc_length(sc, ctl.crc_length); if (sc->ictl.crc_length == LMC_CTL_CRC_LENGTH_16) sc->TxDescriptControlInit |= LMC_TDES_ADD_CRC_DISABLE; else sc->TxDescriptControlInit &= ~LMC_TDES_ADD_CRC_DISABLE; }
if (ctl.keepalive_onoff == LMC_CTL_OFF) sp->pp_flags &= ~PP_KEEPALIVE; /* Turn off */ else sp->pp_flags |= PP_KEEPALIVE; /* Turn on */
ret = 0; break;
case LMCIOCIFTYPE: /*fold01*/ { u_int16_t old_type = sc->if_type; u_int16_t new_type;
if (!suser ()) { ret = -EPERM; break; }
LMC_COPY_FROM_USER(&new_type, ifr->ifr_data, sizeof(u_int16_t));
if (new_type == old_type) { ret = 0 ; break; /* no change */ } lmc_proto_close(sc); lmc_proto_detach(sc);
sc->if_type = new_type; // lmc_proto_init(sc); lmc_proto_attach(sc); lmc_proto_open(sc);
ret = 0 ; break ; }
case LMCIOCGETXINFO: /*fold01*/ sc->lmc_xinfo.Magic0 = 0xBEEFCAFE;
sc->lmc_xinfo.PciCardType = sc->lmc_cardtype; sc->lmc_xinfo.PciSlotNumber = 0; sc->lmc_xinfo.DriverMajorVersion = DRIVER_MAJOR_VERSION; sc->lmc_xinfo.DriverMinorVersion = DRIVER_MINOR_VERSION; sc->lmc_xinfo.DriverSubVersion = DRIVER_SUB_VERSION; sc->lmc_xinfo.XilinxRevisionNumber = lmc_mii_readreg (sc, 0, 3) & 0xf; sc->lmc_xinfo.MaxFrameSize = LMC_PKT_BUF_SZ; sc->lmc_xinfo.link_status = sc->lmc_media->get_link_status (sc); sc->lmc_xinfo.mii_reg16 = lmc_mii_readreg (sc, 0, 16);
sc->lmc_xinfo.Magic1 = 0xDEADBEEF;
LMC_COPY_TO_USER(ifr->ifr_data, &sc->lmc_xinfo, sizeof (struct lmc_xinfo)); ret = 0;
break;
case LMCIOCGETLMCSTATS: /*fold01*/ if (sc->lmc_cardtype == LMC_CARDTYPE_T1){ lmc_mii_writereg (sc, 0, 17, T1FRAMER_FERR_LSB); sc->stats.framingBitErrorCount += lmc_mii_readreg (sc, 0, 18) & 0xff; lmc_mii_writereg (sc, 0, 17, T1FRAMER_FERR_MSB); sc->stats.framingBitErrorCount += (lmc_mii_readreg (sc, 0, 18) & 0xff) << 8; lmc_mii_writereg (sc, 0, 17, T1FRAMER_LCV_LSB); sc->stats.lineCodeViolationCount += lmc_mii_readreg (sc, 0, 18) & 0xff; lmc_mii_writereg (sc, 0, 17, T1FRAMER_LCV_MSB); sc->stats.lineCodeViolationCount += (lmc_mii_readreg (sc, 0, 18) & 0xff) << 8; lmc_mii_writereg (sc, 0, 17, T1FRAMER_AERR); regVal = lmc_mii_readreg (sc, 0, 18) & 0xff;
sc->stats.lossOfFrameCount += (regVal & T1FRAMER_LOF_MASK) >> 4; sc->stats.changeOfFrameAlignmentCount += (regVal & T1FRAMER_COFA_MASK) >> 2; sc->stats.severelyErroredFrameCount += regVal & T1FRAMER_SEF_MASK; }
LMC_COPY_TO_USER(ifr->ifr_data, &sc->stats, sizeof (struct lmc_statistics));
ret = 0; break;
case LMCIOCCLEARLMCSTATS: /*fold01*/ if (!suser ()){ ret = -EPERM; break; }
memset (&sc->stats, 0, sizeof (struct lmc_statistics)); sc->stats.check = STATCHECK; sc->stats.version_size = (DRIVER_VERSION << 16) + sizeof (struct lmc_statistics); sc->stats.lmc_cardtype = sc->lmc_cardtype; ret = 0; break;
case LMCIOCSETCIRCUIT: /*fold01*/ if (!suser ()){ ret = -EPERM; break; }
if(dev->flags & IFF_UP){ ret = -EBUSY; break; }
LMC_COPY_FROM_USER(&ctl, ifr->ifr_data, sizeof (lmc_ctl_t)); sc->lmc_media->set_circuit_type(sc, ctl.circuit_type); sc->ictl.circuit_type = ctl.circuit_type; ret = 0;
break;
case LMCIOCRESET: /*fold01*/ if (!suser ()){ ret = -EPERM; break; }
/* Reset driver and bring back to current state */ printk (" REG16 before reset +%04x\n", lmc_mii_readreg (sc, 0, 16)); lmc_running_reset (dev); printk (" REG16 after reset +%04x\n", lmc_mii_readreg (sc, 0, 16));
LMC_EVENT_LOG(LMC_EVENT_FORCEDRESET, LMC_CSR_READ (sc, csr_status), lmc_mii_readreg (sc, 0, 16));
ret = 0; break;
#ifdef DEBUG case LMCIOCDUMPEVENTLOG: LMC_COPY_TO_USER(ifr->ifr_data, &lmcEventLogIndex, sizeof (u32)); LMC_COPY_TO_USER(ifr->ifr_data + sizeof (u32), lmcEventLogBuf, sizeof (lmcEventLogBuf));
ret = 0; break; #endif /* end ifdef _DBG_EVENTLOG */ case LMCIOCT1CONTROL: /*fold01*/ if (sc->lmc_cardtype != LMC_CARDTYPE_T1){ ret = -EOPNOTSUPP; break; } break; case LMCIOCXILINX: /*fold01*/ { struct lmc_xilinx_control xc; /*fold02*/
if (!suser ()){ ret = -EPERM; break; }
/* * Stop the xwitter whlie we restart the hardware */ LMC_XMITTER_BUSY(dev);
LMC_COPY_FROM_USER(&xc, ifr->ifr_data, sizeof (struct lmc_xilinx_control)); switch(xc.command){ case lmc_xilinx_reset: /*fold02*/ { u16 mii; mii = lmc_mii_readreg (sc, 0, 16);
/* * Make all of them 0 and make input */ lmc_gpio_mkinput(sc, 0xff);
/* * make the reset output */ lmc_gpio_mkoutput(sc, LMC_GEP_RESET);
/* * RESET low to force configuration. This also forces * the transmitter clock to be internal, but we expect to reset * that later anyway. */
sc->lmc_gpio &= ~LMC_GEP_RESET; LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio);
/* * hold for more than 10 microseconds */ udelay(50);
sc->lmc_gpio |= LMC_GEP_RESET; LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio);
/* * stop driving Xilinx-related signals */ lmc_gpio_mkinput(sc, 0xff);
/* Reset the frammer hardware */ sc->lmc_media->set_link_status (sc, 1); sc->lmc_media->set_status (sc, NULL); // lmc_softreset(sc);
{ int i; for(i = 0; i < 5; i++){ lmc_led_on(sc, LMC_DS3_LED0); mdelay(100); lmc_led_off(sc, LMC_DS3_LED0); lmc_led_on(sc, LMC_DS3_LED1); mdelay(100); lmc_led_off(sc, LMC_DS3_LED1); lmc_led_on(sc, LMC_DS3_LED3); mdelay(100); lmc_led_off(sc, LMC_DS3_LED3); lmc_led_on(sc, LMC_DS3_LED2); mdelay(100); lmc_led_off(sc, LMC_DS3_LED2); } }
ret = 0x0;
}
break; case lmc_xilinx_load_prom: /*fold02*/ { u16 mii; int timeout = 500000; mii = lmc_mii_readreg (sc, 0, 16);
/* * Make all of them 0 and make input */ lmc_gpio_mkinput(sc, 0xff);
/* * make the reset output */ lmc_gpio_mkoutput(sc, LMC_GEP_DP | LMC_GEP_RESET);
/* * RESET low to force configuration. This also forces * the transmitter clock to be internal, but we expect to reset * that later anyway. */
sc->lmc_gpio &= ~(LMC_GEP_RESET | LMC_GEP_DP); LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio);
/* * hold for more than 10 microseconds */ udelay(50);
sc->lmc_gpio |= LMC_GEP_DP | LMC_GEP_RESET; LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio);
/* * busy wait for the chip to reset */ while( (LMC_CSR_READ(sc, csr_gp) & LMC_GEP_INIT) == 0 && (timeout-- > 0)) ;
/* * stop driving Xilinx-related signals */ lmc_gpio_mkinput(sc, 0xff);
ret = 0x0;
break;
}
case lmc_xilinx_load: /*fold02*/ { char *data; int pos; int timeout = 500000;
if(xc.data == 0x0){ ret = -EINVAL; break; }
data = kmalloc(xc.len, GFP_KERNEL); if(data == 0x0){ printk(KERN_WARNING "%s: Failed to allocate memory for copy\n", dev->name); ret = -ENOMEM; break; } if(copy_from_user(data, xc.data, xc.len)) { kfree(data); ret = -ENOMEM; break; }
printk("%s: Starting load of data Len: %d at 0x%p == 0x%p\n", dev->name, xc.len, xc.data, data);
lmc_gpio_mkinput(sc, 0xff);
/* * Clear the Xilinx and start prgramming from the DEC */
/* * Set ouput as: * Reset: 0 (active) * DP: 0 (active) * Mode: 1 * */ sc->lmc_gpio = 0x00; sc->lmc_gpio &= ~LMC_GEP_DP; sc->lmc_gpio &= ~LMC_GEP_RESET; sc->lmc_gpio |= LMC_GEP_MODE; LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio);
lmc_gpio_mkoutput(sc, LMC_GEP_MODE | LMC_GEP_DP | LMC_GEP_RESET);
/* * Wait at least 10 us 20 to be safe */ udelay(50);
/* * Clear reset and activate programming lines * Reset: Input * DP: Input * Clock: Output * Data: Output * Mode: Output */ lmc_gpio_mkinput(sc, LMC_GEP_DP | LMC_GEP_RESET);
/* * Set LOAD, DATA, Clock to 1 */ sc->lmc_gpio = 0x00; sc->lmc_gpio |= LMC_GEP_MODE; sc->lmc_gpio |= LMC_GEP_DATA; sc->lmc_gpio |= LMC_GEP_CLK; LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio); lmc_gpio_mkoutput(sc, LMC_GEP_DATA | LMC_GEP_CLK | LMC_GEP_MODE );
/* * busy wait for the chip to reset */ while( (LMC_CSR_READ(sc, csr_gp) & LMC_GEP_INIT) == 0 && (timeout-- > 0)) ;
printk(KERN_DEBUG "%s: Waited %d for the Xilinx to clear it's memory\n", dev->name, 500000-timeout);
for(pos = 0; pos < xc.len; pos++){ switch(data[pos]){ case 0: sc->lmc_gpio &= ~LMC_GEP_DATA; /* Data is 0 */ break; case 1: sc->lmc_gpio |= LMC_GEP_DATA; /* Data is 1 */ break; default: printk(KERN_WARNING "%s Bad data in xilinx programming data at %d, got %d wanted 0 or 1\n", dev->name, pos, data[pos]); sc->lmc_gpio |= LMC_GEP_DATA; /* Assume it's 1 */ } sc->lmc_gpio &= ~LMC_GEP_CLK; /* Clock to zero */ sc->lmc_gpio |= LMC_GEP_MODE; LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio); udelay(1); sc->lmc_gpio |= LMC_GEP_CLK; /* Put the clack back to one */ sc->lmc_gpio |= LMC_GEP_MODE; LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio); udelay(1); } if((LMC_CSR_READ(sc, csr_gp) & LMC_GEP_INIT) == 0){ printk(KERN_WARNING "%s: Reprogramming FAILED. Needs to be reprogrammed. (corrupted data)\n", dev->name); } else if((LMC_CSR_READ(sc, csr_gp) & LMC_GEP_DP) == 0){ printk(KERN_WARNING "%s: Reprogramming FAILED. Needs to be reprogrammed. (done)\n", dev->name); } else { printk(KERN_DEBUG "%s: Done reprogramming Xilinx, %d bits, good luck!\n", dev->name, pos); }
lmc_gpio_mkinput(sc, 0xff); sc->lmc_miireg16 |= LMC_MII16_FIFO_RESET; lmc_mii_writereg(sc, 0, 16, sc->lmc_miireg16);
sc->lmc_miireg16 &= ~LMC_MII16_FIFO_RESET; lmc_mii_writereg(sc, 0, 16, sc->lmc_miireg16);
kfree(data); ret = 0; break; } default: /*fold02*/ ret = -EBADE; break; }
LMC_XMITTER_FREE(dev); sc->lmc_txfull = 0;
} break; default: /*fold01*/ /* If we don't know what to do, give the protocol a shot. */ ret = lmc_proto_ioctl (sc, ifr, cmd); break; }
spin_unlock_irqrestore(&sc->lmc_lock, flags); /*fold01*/
lmc_trace(dev, "lmc_ioctl out");
return ret; }
/* the watchdog process that cruises around */ static void lmc_watchdog (unsigned long data) /*fold00*/ { struct net_device *dev = (struct net_device *) data; lmc_softc_t *sc; int link_status; u_int32_t ticks; LMC_SPIN_FLAGS;
sc = dev->priv;
lmc_trace(dev, "lmc_watchdog in");
spin_lock_irqsave(&sc->lmc_lock, flags);
if(sc->check != 0xBEAFCAFE){ printk("LMC: Corrupt net_device stuct, breaking out\n"); spin_unlock_irqrestore(&sc->lmc_lock, flags); return; }
/* Make sure the tx jabber and rx watchdog are off, * and the transmit and receive processes are running. */
LMC_CSR_WRITE (sc, csr_15, 0x00000011); sc->lmc_cmdmode |= TULIP_CMD_TXRUN | TULIP_CMD_RXRUN; LMC_CSR_WRITE (sc, csr_command, sc->lmc_cmdmode);
if (sc->lmc_ok == 0) goto kick_timer;
LMC_EVENT_LOG(LMC_EVENT_WATCHDOG, LMC_CSR_READ (sc, csr_status), lmc_mii_readreg (sc, 0, 16));
/* --- begin time out check ----------------------------------- * check for a transmit interrupt timeout * Has the packet xmt vs xmt serviced threshold been exceeded */ if (sc->lmc_taint_tx == sc->lastlmc_taint_tx && sc->stats.tx_packets > sc->lasttx_packets && sc->tx_TimeoutInd == 0) {
/* wait for the watchdog to come around again */ sc->tx_TimeoutInd = 1; } else if (sc->lmc_taint_tx == sc->lastlmc_taint_tx && sc->stats.tx_packets > sc->lasttx_packets && sc->tx_TimeoutInd) {
LMC_EVENT_LOG(LMC_EVENT_XMTINTTMO, LMC_CSR_READ (sc, csr_status), 0);
sc->tx_TimeoutDisplay = 1; sc->stats.tx_TimeoutCnt++;
/* DEC chip is stuck, hit it with a RESET!!!! */ lmc_running_reset (dev);
/* look at receive & transmit process state to make sure they are running */ LMC_EVENT_LOG(LMC_EVENT_RESET1, LMC_CSR_READ (sc, csr_status), 0);
/* look at: DSR - 02 for Reg 16 * CTS - 08 * DCD - 10 * RI - 20 * for Reg 17 */ LMC_EVENT_LOG(LMC_EVENT_RESET2, lmc_mii_readreg (sc, 0, 16), lmc_mii_readreg (sc, 0, 17));
/* reset the transmit timeout detection flag */ sc->tx_TimeoutInd = 0; sc->lastlmc_taint_tx = sc->lmc_taint_tx; sc->lasttx_packets = sc->stats.tx_packets; } else { sc->tx_TimeoutInd = 0; sc->lastlmc_taint_tx = sc->lmc_taint_tx; sc->lasttx_packets = sc->stats.tx_packets; }
/* --- end time out check ----------------------------------- */
link_status = sc->lmc_media->get_link_status (sc);
/* * hardware level link lost, but the interface is marked as up. * Mark it as down. */ if ((link_status == 0) && (sc->last_link_status != 0)) { printk(KERN_WARNING "%s: hardware/physical link down\n", dev->name); sc->last_link_status = 0; /* lmc_reset (sc); Why reset??? The link can go down ok */
/* Inform the world that link has been lost */ dev->flags &= ~IFF_RUNNING; }
/* * hardware link is up, but the interface is marked as down. * Bring it back up again. */ if (link_status != 0 && sc->last_link_status == 0) { printk(KERN_WARNING "%s: hardware/physical link up\n", dev->name); sc->last_link_status = 1; /* lmc_reset (sc); Again why reset??? */
/* Inform the world that link protocol is back up. */ dev->flags |= IFF_RUNNING;
/* Now we have to tell the syncppp that we had an outage * and that it should deal. Calling sppp_reopen here * should do the trick, but we may have to call sppp_close * when the link goes down, and call sppp_open here. * Subject to more testing. * --bbraun */
lmc_proto_reopen(sc);
}
/* Call media specific watchdog functions */ sc->lmc_media->watchdog(sc);
/* * Poke the transmitter to make sure it * never stops, even if we run out of mem */ LMC_CSR_WRITE(sc, csr_rxpoll, 0);
/* * Check for code that failed * and try and fix it as appropriate */ if(sc->failed_ring == 1){ /* * Failed to setup the recv/xmit rin * Try again */ sc->failed_ring = 0; lmc_softreset(sc); } if(sc->failed_recv_alloc == 1){ /* * We failed to alloc mem in the * interrupt handler, go through the rings * and rebuild them */ sc->failed_recv_alloc = 0; lmc_softreset(sc); }
/* * remember the timer value */ kick_timer:
ticks = LMC_CSR_READ (sc, csr_gp_timer); LMC_CSR_WRITE (sc, csr_gp_timer, 0xffffffffUL); sc->ictl.ticks = 0x0000ffff - (ticks & 0x0000ffff);
/* * restart this timer. */ sc->timer.expires = jiffies + (HZ); add_timer (&sc->timer);
spin_unlock_irqrestore(&sc->lmc_lock, flags);
lmc_trace(dev, "lmc_watchdog out");
}
static int lmc_init(struct net_device * const dev) /*fold00*/ { lmc_trace(dev, "lmc_init in"); lmc_trace(dev, "lmc_init out"); return 0; }
/* This initializes each card from lmc_probe() */ static struct net_device *lmc_probe1 (struct net_device *dev, unsigned long ioaddr, unsigned int irq, /*fold00*/ int chip_id, int subdevice, int board_idx) { lmc_softc_t *sc = NULL; u_int16_t AdapModelNum;
/* * Allocate our own device structure */
#if LINUX_VERSION_CODE < 0x20363 dev = kmalloc (sizeof (struct ppp_device)+8, GFP_KERNEL); #else dev = kmalloc (sizeof (struct net_device)+8, GFP_KERNEL); #endif if (dev == NULL){ printk (KERN_ERR "lmc: kmalloc for device failed\n"); return NULL; } memset (dev, 0, sizeof (struct net_device));
#ifndef GCOM /* * Switch to common hdlc%d naming. We name by type not by vendor */ dev_alloc_name(dev, "hdlc%d"); #else /* * GCOM uses LMC vendor name so that clients can know which card * to attach to. */ dev_alloc_name(dev, "lmc%d"); #endif
lmc_trace(dev, "lmc_probe1 in"); Lmc_Count++;
if(lmc_first_load == 0){ printk(KERN_INFO "Lan Media Corporation WAN Driver Version %d.%d.%d\n",DRIVER_MAJOR_VERSION, DRIVER_MINOR_VERSION,DRIVER_SUB_VERSION); lmc_first_load = 1; } /* * Allocate space for the private data structure */
sc = kmalloc (sizeof (lmc_softc_t), GFP_KERNEL); if (sc == NULL) { printk (KERN_WARNING "%s: Cannot allocate memory for device state\n", dev->name); return (NULL); } memset (sc, 0, sizeof (lmc_softc_t)); dev->priv = sc; sc->lmc_device = dev; sc->name = dev->name;
/* Initialize the sppp layer */ /* An ioctl can cause a subsequent detach for raw frame interface */ sc->if_type = LMC_PPP; sc->check = 0xBEAFCAFE; dev->base_addr = ioaddr; dev->irq = irq; /* * This will get the protocol layer ready and do any 1 time init's * Must have a valid sc and dev structure */ lmc_proto_init(sc);
lmc_proto_attach(sc);
/* Just fill in the entries for the device */
dev->init = lmc_init; dev->type = ARPHRD_HDLC; dev->hard_start_xmit = lmc_start_xmit; dev->open = lmc_open; dev->stop = lmc_close; dev->get_stats = lmc_get_stats; dev->do_ioctl = lmc_ioctl; dev->set_config = lmc_set_config; #if LINUX_VERSION_CODE >= 0x20363 dev->tx_timeout = lmc_driver_timeout; dev->watchdog_timeo = (HZ); /* 1 second */ #endif /* * Why were we changing this??? dev->tx_queue_len = 100; */
/* Init the spin lock so can call it latter */
spin_lock_init(&sc->lmc_lock);
LMC_SETUP_20_DEV;
printk ("%s: detected at %lx, irq %d\n", dev->name, ioaddr, dev->irq);
if (register_netdev (dev) != 0) { printk (KERN_ERR "%s: register_netdev failed.\n", dev->name); lmc_proto_detach(sc); kfree (dev->priv); kfree (dev); return NULL; }
/* * Request the region of registers we need, so that * later on, no one else will take our card away from * us. */ request_region (ioaddr, LMC_REG_RANGE, dev->name);
sc->lmc_cardtype = LMC_CARDTYPE_UNKNOWN; sc->lmc_timing = LMC_CTL_CLOCK_SOURCE_EXT;
switch (subdevice) { case PCI_PRODUCT_LMC_HSSI: printk ("%s: LMC HSSI\n", dev->name); sc->lmc_cardtype = LMC_CARDTYPE_HSSI; sc->lmc_media = &lmc_hssi_media; break; case PCI_PRODUCT_LMC_DS3: printk ("%s: LMC DS3\n", dev->name); sc->lmc_cardtype = LMC_CARDTYPE_DS3; sc->lmc_media = &lmc_ds3_media; break; case PCI_PRODUCT_LMC_SSI: printk ("%s: LMC SSI\n", dev->name); sc->lmc_cardtype = LMC_CARDTYPE_SSI; sc->lmc_media = &lmc_ssi_media; break; case PCI_PRODUCT_LMC_T1: printk ("%s: LMC T1\n", dev->name); sc->lmc_cardtype = LMC_CARDTYPE_T1; sc->lmc_media = &lmc_t1_media; break; default: printk (KERN_WARNING "%s: LMC UNKOWN CARD!\n", dev->name); break; }
lmc_initcsrs (sc, dev->base_addr, 8);
lmc_gpio_mkinput (sc, 0xff); sc->lmc_gpio = 0; /* drive no signals yet */
sc->lmc_media->defaults (sc);
sc->lmc_media->set_link_status (sc, LMC_LINK_UP);
/* verify that the PCI Sub System ID matches the Adapter Model number * from the MII register */ AdapModelNum = (lmc_mii_readreg (sc, 0, 3) & 0x3f0) >> 4;
if ((AdapModelNum == LMC_ADAP_T1 && subdevice == PCI_PRODUCT_LMC_T1) || /* detect LMC1200 */ (AdapModelNum == LMC_ADAP_SSI && subdevice == PCI_PRODUCT_LMC_SSI) || /* detect LMC1000 */ (AdapModelNum == LMC_ADAP_DS3 && subdevice == PCI_PRODUCT_LMC_DS3) || /* detect LMC5245 */ (AdapModelNum == LMC_ADAP_HSSI && subdevice == PCI_PRODUCT_LMC_HSSI)) { /* detect LMC5200 */
} else { printk ("%s: Model number (%d) miscompare for PCI Subsystem ID = 0x%04x\n", dev->name, AdapModelNum, subdevice); // return (NULL); } /* * reset clock */ LMC_CSR_WRITE (sc, csr_gp_timer, 0xFFFFFFFFUL);
sc->board_idx = board_idx;
memset (&sc->stats, 0, sizeof (struct lmc_statistics));
sc->stats.check = STATCHECK; sc->stats.version_size = (DRIVER_VERSION << 16) + sizeof (struct lmc_statistics); sc->stats.lmc_cardtype = sc->lmc_cardtype;
sc->lmc_ok = 0; sc->last_link_status = 0;
lmc_trace(dev, "lmc_probe1 out");
return dev; }
/* This is the entry point. This is what is called immediatly. */ /* This goes out and finds the card */
int lmc_probe_fake(struct net_device *dev) /*fold00*/ { lmc_probe(NULL); /* Return 1 to unloaded bogus device */ return 1; }
int lmc_probe (struct net_device *dev) /*fold00*/ { int pci_index = 0; unsigned long pci_ioaddr; unsigned int pci_irq_line; u16 vendor, subvendor, device, subdevice; u32 foundaddr = 0; unsigned char pci_bus, pci_device_fn; u8 intcf = 0;
/* The card is only available on PCI, so if we don't have a * PCI bus, we are in trouble. */
if (!LMC_PCI_PRESENT()) { /* printk ("%s: We really want a pci bios!\n", dev->name);*/ return -1; } /* Loop basically until we don't find anymore. */ while (pci_index < 0xff){ struct pci_dev *pdev; /* The tulip is considered an ethernet class of card... */ if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) { /* No card found on this pass */ break; } /* Read the info we need to determine if this is * our card or not */ pdev = pci_find_slot (pci_bus, pci_device_fn); if (!pdev) break;
if (pci_enable_device(pdev)) break;
vendor = pdev->vendor; device = pdev->device; pci_irq_line = pdev->irq; pci_ioaddr = pci_resource_start (pdev, 0); subvendor = pdev->subsystem_vendor; subdevice = pdev->subsystem_device;
pci_set_master (pdev);
/* * Make sure it's the correct card. CHECK SUBVENDOR ID! * There are lots of tulip's out there. * Also check the region of registers we will soon be * poking, to make sure no one else has reserved them. * This prevents taking someone else's device. * * Check either the subvendor or the subdevice, some systems reverse * the setting in the bois, seems to be version and arch dependant? * Fix the two variables * */ if (!(check_region (pci_ioaddr, LMC_REG_RANGE)) && (vendor == CORRECT_VENDOR_ID) && (device == CORRECT_DEV_ID) && ((subvendor == PCI_VENDOR_LMC) || (subdevice == PCI_VENDOR_LMC))){ struct net_device *cur, *prev = NULL;
/* Fix the error, exchange the two values */ if(subdevice == PCI_VENDOR_LMC){ subdevice = subvendor; subvendor = PCI_VENDOR_LMC ; }
/* Make the call to actually setup this card */ dev = lmc_probe1 (dev, pci_ioaddr, pci_irq_line, device, subdevice, cards_found); if (dev == NULL) { printk ("lmc_probe: lmc_probe1 failed\n"); goto lmc_probe_next_card; } /* insert the device into the chain of lmc devices */ for (cur = Lmc_root_dev; cur != NULL; cur = ((lmc_softc_t *) cur->priv)->next_module) { prev = cur; }
if (prev == NULL) Lmc_root_dev = dev; else ((lmc_softc_t *) prev->priv)->next_module = dev;
((lmc_softc_t *) dev->priv)->next_module = NULL; /* end insert */
foundaddr = dev->base_addr;
cards_found++; intcf++; } lmc_probe_next_card: pci_index++; }
if (cards_found < 1) return -1;
#if LINUX_VERSION_CODE >= 0x20200 return foundaddr; #else return 0; #endif }
/* After this is called, packets can be sent. * Does not initialize the addresses */ static int lmc_open (struct net_device *dev) /*fold00*/ { lmc_softc_t *sc = dev->priv;
lmc_trace(dev, "lmc_open in");
lmc_led_on(sc, LMC_DS3_LED0);
lmc_dec_reset (sc); lmc_reset (sc);
LMC_EVENT_LOG(LMC_EVENT_RESET1, LMC_CSR_READ (sc, csr_status), 0); LMC_EVENT_LOG(LMC_EVENT_RESET2, lmc_mii_readreg (sc, 0, 16), lmc_mii_readreg (sc, 0, 17));
if (sc->lmc_ok){ lmc_trace(dev, "lmc_open lmc_ok out"); return (0); }
lmc_softreset (sc);
/* Since we have to use PCI bus, this should work on x86,alpha,ppc */ if (request_irq (dev->irq, &lmc_interrupt, SA_SHIRQ, dev->name, dev)){ printk(KERN_WARNING "%s: could not get irq: %d\n", dev->name, dev->irq); lmc_trace(dev, "lmc_open irq failed out"); return -EAGAIN; } sc->got_irq = 1;
/* Assert Terminal Active */ sc->lmc_miireg16 |= LMC_MII16_LED_ALL; sc->lmc_media->set_link_status (sc, LMC_LINK_UP);
/* * reset to last state. */ sc->lmc_media->set_status (sc, NULL);
/* setup default bits to be used in tulip_desc_t transmit descriptor * -baz */ sc->TxDescriptControlInit = ( LMC_TDES_INTERRUPT_ON_COMPLETION | LMC_TDES_FIRST_SEGMENT | LMC_TDES_LAST_SEGMENT | LMC_TDES_SECOND_ADDR_CHAINED | LMC_TDES_DISABLE_PADDING );
if (sc->ictl.crc_length == LMC_CTL_CRC_LENGTH_16) { /* disable 32 bit CRC generated by ASIC */ sc->TxDescriptControlInit |= LMC_TDES_ADD_CRC_DISABLE; } sc->lmc_media->set_crc_length(sc, sc->ictl.crc_length); /* Acknoledge the Terminal Active and light LEDs */
/* dev->flags |= IFF_UP; */
lmc_proto_open(sc);
dev->do_ioctl = lmc_ioctl;
LMC_XMITTER_INIT(dev); #if LINUX_VERSION_CODE < 0x20363 dev->start = 1; #endif sc->stats.tx_tbusy0++ ;
MOD_INC_USE_COUNT;
/* * select what interrupts we want to get */ sc->lmc_intrmask = 0; /* Should be using the default interrupt mask defined in the .h file. */ sc->lmc_intrmask |= (TULIP_STS_NORMALINTR | TULIP_STS_RXINTR | TULIP_STS_TXINTR | TULIP_STS_ABNRMLINTR | TULIP_STS_SYSERROR | TULIP_STS_TXSTOPPED | TULIP_STS_TXUNDERFLOW | TULIP_STS_RXSTOPPED | TULIP_STS_RXNOBUF ); LMC_CSR_WRITE (sc, csr_intr, sc->lmc_intrmask);
sc->lmc_cmdmode |= TULIP_CMD_TXRUN; sc->lmc_cmdmode |= TULIP_CMD_RXRUN; LMC_CSR_WRITE (sc, csr_command, sc->lmc_cmdmode);
sc->lmc_ok = 1; /* Run watchdog */
/* * Set the if up now - pfb */
sc->last_link_status = 1;
/* * Setup a timer for the watchdog on probe, and start it running. * Since lmc_ok == 0, it will be a NOP for now. */ init_timer (&sc->timer); sc->timer.expires = jiffies + HZ; sc->timer.data = (unsigned long) dev; sc->timer.function = &lmc_watchdog; add_timer (&sc->timer);
lmc_trace(dev, "lmc_open out");
return (0); }
/* Total reset to compensate for the AdTran DSU doing bad things * under heavy load */
static void lmc_running_reset (struct net_device *dev) /*fold00*/ {
lmc_softc_t *sc = (lmc_softc_t *) dev->priv;
lmc_trace(dev, "lmc_runnig_reset in");
/* stop interrupts */ /* Clear the interrupt mask */ LMC_CSR_WRITE (sc, csr_intr, 0x00000000);
lmc_dec_reset (sc); lmc_reset (sc); lmc_softreset (sc); /* sc->lmc_miireg16 |= LMC_MII16_LED_ALL; */ sc->lmc_media->set_link_status (sc, 1); sc->lmc_media->set_status (sc, NULL);
//dev->flags |= IFF_RUNNING; LMC_XMITTER_FREE(dev);
sc->lmc_txfull = 0; sc->stats.tx_tbusy0++ ;
sc->lmc_intrmask = TULIP_DEFAULT_INTR_MASK; LMC_CSR_WRITE (sc, csr_intr, sc->lmc_intrmask);
sc->lmc_cmdmode |= (TULIP_CMD_TXRUN | TULIP_CMD_RXRUN); LMC_CSR_WRITE (sc, csr_command, sc->lmc_cmdmode);
lmc_trace(dev, "lmc_runnin_reset_out"); }
/* This is what is called when you ifconfig down a device. * This disables the timer for the watchdog and keepalives, * and disables the irq for dev. */ static int lmc_close (struct net_device *dev) /*fold00*/ { /* not calling release_region() as we should */ lmc_softc_t *sc;
lmc_trace(dev, "lmc_close in"); sc = dev->priv; sc->lmc_ok = 0; sc->lmc_media->set_link_status (sc, 0); del_timer (&sc->timer); lmc_proto_close(sc); lmc_ifdown (dev);
lmc_trace(dev, "lmc_close out"); return 0; }
/* Ends the transfer of packets */ /* When the interface goes down, this is called */ static int lmc_ifdown (struct net_device *dev) /*fold00*/ { lmc_softc_t *sc = dev->priv; u32 csr6; int i;
lmc_trace(dev, "lmc_ifdown in"); /* Don't let anything else go on right now */ // dev->start = 0; LMC_XMITTER_BUSY(dev); sc->stats.tx_tbusy1++ ;
/* stop interrupts */ /* Clear the interrupt mask */ LMC_CSR_WRITE (sc, csr_intr, 0x00000000);
/* Stop Tx and Rx on the chip */ csr6 = LMC_CSR_READ (sc, csr_command); csr6 &= ~LMC_DEC_ST; /* Turn off the Transmission bit */ csr6 &= ~LMC_DEC_SR; /* Turn off the Receive bit */ LMC_CSR_WRITE (sc, csr_command, csr6);
dev->flags &= ~IFF_RUNNING;
sc->stats.rx_missed_errors += LMC_CSR_READ (sc, csr_missed_frames) & 0xffff;
/* release the interrupt */ if(sc->got_irq == 1){ free_irq (dev->irq, dev); sc->got_irq = 0; }
/* free skbuffs in the Rx queue */ for (i = 0; i < LMC_RXDESCS; i++) { struct sk_buff *skb = sc->lmc_rxq[i]; sc->lmc_rxq[i] = 0; sc->lmc_rxring[i].status = 0; sc->lmc_rxring[i].length = 0; sc->lmc_rxring[i].buffer1 = 0xDEADBEEF; if (skb != NULL) { LMC_SKB_FREE(skb, 1); LMC_DEV_KFREE_SKB (skb); } sc->lmc_rxq[i] = NULL; }
for (i = 0; i < LMC_TXDESCS; i++) { if (sc->lmc_txq[i] != NULL) LMC_DEV_KFREE_SKB (sc->lmc_txq[i]); sc->lmc_txq[i] = NULL; }
lmc_led_off (sc, LMC_MII16_LED_ALL);
LMC_XMITTER_FREE(dev); sc->stats.tx_tbusy0++ ;
lmc_trace(dev, "lmc_ifdown out");
MOD_DEC_USE_COUNT; return 0; }
/* Interrupt handling routine. This will take an incoming packet, or clean * up after a trasmit. */ static void lmc_interrupt (int irq, void *dev_instance, struct pt_regs *regs) /*fold00*/ { struct net_device *dev = (struct net_device *) dev_instance; lmc_softc_t *sc; u32 csr; int i; s32 stat; unsigned int badtx; u32 firstcsr; int max_work = LMC_RXDESCS;
lmc_trace(dev, "lmc_interrupt in");
sc = dev->priv; spin_lock(&sc->lmc_lock);
/* * Read the csr to find what interrupts we have (if any) */ csr = LMC_CSR_READ (sc, csr_status);
/* * Make sure this is our interrupt */ if ( ! (csr & sc->lmc_intrmask)) { goto lmc_int_fail_out; }
firstcsr = csr;
/* always go through this loop at least once */ while (csr & sc->lmc_intrmask) { /* * Clear interrupt bits, we handle all case below */ LMC_CSR_WRITE (sc, csr_status, csr);
/* * One of * - Transmit process timed out CSR5<1> * - Transmit jabber timeout CSR5<3> * - Transmit underflow CSR5<5> * - Transmit Receiver buffer unavailable CSR5<7> * - Receive process stopped CSR5<8> * - Receive watchdog timeout CSR5<9> * - Early transmit interrupt CSR5<10> * * Is this really right? Should we do a running reset for jabber? * (being a WAN card and all) */ if (csr & TULIP_STS_ABNRMLINTR){ lmc_running_reset (dev); break; } if (csr & TULIP_STS_RXINTR){ lmc_trace(dev, "rx interrupt"); lmc_rx (dev); } if (csr & (TULIP_STS_TXINTR | TULIP_STS_TXNOBUF | TULIP_STS_TXSTOPPED)) {
int n_compl = 0 ; /* reset the transmit timeout detection flag -baz */ sc->stats.tx_NoCompleteCnt = 0;
badtx = sc->lmc_taint_tx; i = badtx % LMC_TXDESCS;
while ((badtx < sc->lmc_next_tx)) { stat = sc->lmc_txring[i].status;
LMC_EVENT_LOG (LMC_EVENT_XMTINT, stat, sc->lmc_txring[i].length); /* * If bit 31 is 1 the tulip owns it break out of the loop */ if (stat & 0x80000000) break;
n_compl++ ; /* i.e., have an empty slot in ring */ /* * If we have no skbuff or have cleared it * Already continue to the next buffer */ if (sc->lmc_txq[i] == NULL) continue;
/* * Check the total error summary to look for any errors */ if (stat & 0x8000) { sc->stats.tx_errors++; if (stat & 0x4104) sc->stats.tx_aborted_errors++; if (stat & 0x0C00) sc->stats.tx_carrier_errors++; if (stat & 0x0200) sc->stats.tx_window_errors++; if (stat & 0x0002) sc->stats.tx_fifo_errors++; } else { #if LINUX_VERSION_CODE >= 0x20200 sc->stats.tx_bytes += sc->lmc_txring[i].length & 0x7ff; #endif sc->stats.tx_packets++; } // LMC_DEV_KFREE_SKB (sc->lmc_txq[i]); dev_kfree_skb_irq(sc->lmc_txq[i]); sc->lmc_txq[i] = 0;
badtx++; i = badtx % LMC_TXDESCS; }
if (sc->lmc_next_tx - badtx > LMC_TXDESCS) { printk ("%s: out of sync pointer\n", dev->name); badtx += LMC_TXDESCS; } LMC_EVENT_LOG(LMC_EVENT_TBUSY0, n_compl, 0); sc->lmc_txfull = 0; LMC_XMITTER_FREE(dev); sc->stats.tx_tbusy0++ ; #if LINUX_VERSION_CODE < 0x20363 mark_bh (NET_BH); /* Tell Linux to give me more packets */ #endif
#ifdef DEBUG sc->stats.dirtyTx = badtx; sc->stats.lmc_next_tx = sc->lmc_next_tx; sc->stats.lmc_txfull = sc->lmc_txfull; #if LINUX_VERSION_CODE < 0x20363 sc->stats.tbusy = dev->tbusy; #endif #endif sc->lmc_taint_tx = badtx;
/* * Why was there a break here??? */ } /* end handle transmit interrupt */
if (csr & TULIP_STS_SYSERROR) { u32 error; printk (KERN_WARNING "%s: system bus error csr: %#8.8x\n", dev->name, csr); error = csr>>23 & 0x7; switch(error){ case 0x000: printk(KERN_WARNING "%s: Parity Fault (bad)\n", dev->name); break; case 0x001: printk(KERN_WARNING "%s: Master Abort (naughty)\n", dev->name); break; case 0x010: printk(KERN_WARNING "%s: Target Abort (not so naughty)\n", dev->name); break; default: printk(KERN_WARNING "%s: This bus error code was supposed to be reserved!\n", dev->name); } lmc_dec_reset (sc); lmc_reset (sc); LMC_EVENT_LOG(LMC_EVENT_RESET1, LMC_CSR_READ (sc, csr_status), 0); LMC_EVENT_LOG(LMC_EVENT_RESET2, lmc_mii_readreg (sc, 0, 16), lmc_mii_readreg (sc, 0, 17));
}
if(max_work-- <= 0) break; /* * Get current csr status to make sure * we've cleared all interrupts */ csr = LMC_CSR_READ (sc, csr_status); } /* end interrupt loop */ LMC_EVENT_LOG(LMC_EVENT_INT, firstcsr, csr);
lmc_int_fail_out:
spin_unlock(&sc->lmc_lock);
lmc_trace(dev, "lmc_interrupt out"); }
static int lmc_start_xmit (struct sk_buff *skb, struct net_device *dev) /*fold00*/ { lmc_softc_t *sc; u32 flag; int entry; int ret = 0; LMC_SPIN_FLAGS;
lmc_trace(dev, "lmc_start_xmit in");
sc = dev->priv;
spin_lock_irqsave(&sc->lmc_lock, flags);
/* * If the transmitter is busy * this must be the 5 second polling * from the kernel which called us. * Poke the chip and try to get it running * */ #if LINUX_VERSION_CODE < 0x20363 if(dev->tbusy != 0){ u32 csr6;
printk("%s: Xmitter busy|\n", dev->name);
sc->stats.tx_tbusy_calls++ ; if (jiffies - dev->trans_start < TX_TIMEOUT) { ret = 1; goto lmc_start_xmit_bug_out; }
/* * Chip seems to have locked up * Reset it * This whips out all our decriptor * table and starts from scartch */
LMC_EVENT_LOG(LMC_EVENT_XMTPRCTMO, LMC_CSR_READ (sc, csr_status), sc->stats.tx_ProcTimeout);
lmc_running_reset (dev);
LMC_EVENT_LOG(LMC_EVENT_RESET1, LMC_CSR_READ (sc, csr_status), 0); LMC_EVENT_LOG(LMC_EVENT_RESET2, lmc_mii_readreg (sc, 0, 16), lmc_mii_readreg (sc, 0, 17));
/* restart the tx processes */ csr6 = LMC_CSR_READ (sc, csr_command); LMC_CSR_WRITE (sc, csr_command, csr6 | 0x0002); LMC_CSR_WRITE (sc, csr_command, csr6 | 0x2002);
/* immediate transmit */ LMC_CSR_WRITE (sc, csr_txpoll, 0);
sc->stats.tx_errors++; sc->stats.tx_ProcTimeout++; /* -baz */
dev->trans_start = jiffies;
ret = 1; goto lmc_start_xmit_bug_out; } #endif /* normal path, tbusy known to be zero */
entry = sc->lmc_next_tx % LMC_TXDESCS;
sc->lmc_txq[entry] = skb; sc->lmc_txring[entry].buffer1 = virt_to_bus (skb->data);
LMC_CONSOLE_LOG("xmit", skb->data, skb->len);
#ifndef GCOM /* If the queue is less than half full, don't interrupt */ if (sc->lmc_next_tx - sc->lmc_taint_tx < LMC_TXDESCS / 2) { /* Do not interrupt on completion of this packet */ flag = 0x60000000; LMC_XMITTER_FREE(dev); } else if (sc->lmc_next_tx - sc->lmc_taint_tx == LMC_TXDESCS / 2) { /* This generates an interrupt on completion of this packet */ flag = 0xe0000000; LMC_XMITTER_FREE(dev); } else if (sc->lmc_next_tx - sc->lmc_taint_tx < LMC_TXDESCS - 1) { /* Do not interrupt on completion of this packet */ flag = 0x60000000; LMC_XMITTER_FREE(dev); } else { /* This generates an interrupt on completion of this packet */ flag = 0xe0000000; sc->lmc_txfull = 1; LMC_XMITTER_BUSY(dev); } #else flag = LMC_TDES_INTERRUPT_ON_COMPLETION;
if (sc->lmc_next_tx - sc->lmc_taint_tx >= LMC_TXDESCS - 1) { /* ring full, go busy */ sc->lmc_txfull = 1; LMC_XMITTER_BUSY(dev); sc->stats.tx_tbusy1++ ; LMC_EVENT_LOG(LMC_EVENT_TBUSY1, entry, 0); } #endif
if (entry == LMC_TXDESCS - 1) /* last descriptor in ring */ flag |= LMC_TDES_END_OF_RING; /* flag as such for Tulip */
/* don't pad small packets either */ flag = sc->lmc_txring[entry].length = (skb->len) | flag | sc->TxDescriptControlInit;
/* set the transmit timeout flag to be checked in * the watchdog timer handler. -baz */
sc->stats.tx_NoCompleteCnt++; sc->lmc_next_tx++;
/* give ownership to the chip */ LMC_EVENT_LOG(LMC_EVENT_XMT, flag, entry); sc->lmc_txring[entry].status = 0x80000000;
/* send now! */ LMC_CSR_WRITE (sc, csr_txpoll, 0);
dev->trans_start = jiffies;
#if LINUX_VERSION_CODE < 0x20363 lmc_start_xmit_bug_out: #endif
spin_unlock_irqrestore(&sc->lmc_lock, flags);
lmc_trace(dev, "lmc_start_xmit_out"); return ret; }
static int lmc_rx (struct net_device *dev) /*fold00*/ { lmc_softc_t *sc; int i; int rx_work_limit = LMC_RXDESCS; unsigned int next_rx; int rxIntLoopCnt; /* debug -baz */ int localLengthErrCnt = 0; long stat; struct sk_buff *skb, *nsb; u16 len;
lmc_trace(dev, "lmc_rx in");
sc = dev->priv;
lmc_led_on(sc, LMC_DS3_LED3);
rxIntLoopCnt = 0; /* debug -baz */
i = sc->lmc_next_rx % LMC_RXDESCS; next_rx = sc->lmc_next_rx;
while (((stat = sc->lmc_rxring[i].status) & LMC_RDES_OWN_BIT) != DESC_OWNED_BY_DC21X4) { rxIntLoopCnt++; /* debug -baz */ len = ((stat & LMC_RDES_FRAME_LENGTH) >> RDES_FRAME_LENGTH_BIT_NUMBER); if ((stat & 0x0300) != 0x0300) { /* Check first segment and last segment */ if ((stat & 0x0000ffff) != 0x7fff) { /* Oversized frame */ sc->stats.rx_length_errors++; goto skip_packet; } }
if(stat & 0x00000008){ /* Catch a dribbling bit error */ sc->stats.rx_errors++; sc->stats.rx_frame_errors++; goto skip_packet; }
if(stat & 0x00000004){ /* Catch a CRC error by the Xilinx */ sc->stats.rx_errors++; sc->stats.rx_crc_errors++; goto skip_packet; }
if (len > LMC_PKT_BUF_SZ){ sc->stats.rx_length_errors++; localLengthErrCnt++; goto skip_packet; }
if (len < sc->lmc_crcSize + 2) { sc->stats.rx_length_errors++; sc->stats.rx_SmallPktCnt++; localLengthErrCnt++; goto skip_packet; }
if(stat & 0x00004000){ printk(KERN_WARNING "%s: Receiver descriptor error, receiver out of sync?\n", dev->name); }
len -= sc->lmc_crcSize;
skb = sc->lmc_rxq[i];
/* * We ran out of memory at some point * just allocate an skb buff and continue. */ if(skb == 0x0){ nsb = dev_alloc_skb (LMC_PKT_BUF_SZ + 2); if (nsb) { LMC_SKB_FREE(nsb, 1); sc->lmc_rxq[i] = nsb; nsb->dev = dev; sc->lmc_rxring[i].buffer1 = virt_to_bus (nsb->tail); } sc->failed_recv_alloc = 1; goto skip_packet; } dev->last_rx = jiffies; sc->stats.rx_packets++; sc->stats.rx_bytes += len;
LMC_CONSOLE_LOG("recv", skb->data, len);
/* * I'm not sure of the sanity of this * Packets could be arriving at a constant * 44.210mbits/sec and we're going to copy * them into a new buffer?? */ if(len > (LMC_MTU - (LMC_MTU>>2))){ /* len > LMC_MTU * 0.75 */ /* * If it's a large packet don't copy it just hand it up */ give_it_anyways:
sc->lmc_rxq[i] = 0x0; sc->lmc_rxring[i].buffer1 = 0x0;
skb_put (skb, len); skb->protocol = lmc_proto_type(sc, skb); skb->protocol = htons(ETH_P_WAN_PPP); skb->mac.raw = skb->data; // skb->nh.raw = skb->data; skb->dev = dev; lmc_proto_netif(sc, skb);
/* * This skb will be destroyed by the upper layers, make a new one */ nsb = dev_alloc_skb (LMC_PKT_BUF_SZ + 2); if (nsb) { LMC_SKB_FREE(nsb, 1); sc->lmc_rxq[i] = nsb; nsb->dev = dev; sc->lmc_rxring[i].buffer1 = virt_to_bus (nsb->tail); /* Transferred to 21140 below */ } else { /* * We've run out of memory, stop trying to allocate * memory and exit the interrupt handler * * The chip may run out of receivers and stop * in which care we'll try to allocate the buffer * again. (once a second) */ sc->stats.rx_BuffAllocErr++; LMC_EVENT_LOG(LMC_EVENT_RCVINT, stat, len); sc->failed_recv_alloc = 1; goto skip_out_of_mem; } } else { nsb = dev_alloc_skb(len); if(!nsb) { goto give_it_anyways; } memcpy(skb_put(nsb, len), skb->data, len); nsb->protocol = lmc_proto_type(sc, skb); nsb->mac.raw = nsb->data; // nsb->nh.raw = nsb->data; nsb->dev = dev; lmc_proto_netif(sc, nsb); }
skip_packet: LMC_EVENT_LOG(LMC_EVENT_RCVINT, stat, len); sc->lmc_rxring[i].status = DESC_OWNED_BY_DC21X4;
sc->lmc_next_rx++; i = sc->lmc_next_rx % LMC_RXDESCS; rx_work_limit--; if (rx_work_limit < 0) break; }
/* detect condition for LMC1000 where DSU cable attaches and fills * descriptors with bogus packets * if (localLengthErrCnt > LMC_RXDESCS - 3) { sc->stats.rx_BadPktSurgeCnt++; LMC_EVENT_LOG(LMC_EVENT_BADPKTSURGE, localLengthErrCnt, sc->stats.rx_BadPktSurgeCnt); } */
/* save max count of receive descriptors serviced */ if (rxIntLoopCnt > sc->stats.rxIntLoopCnt) { sc->stats.rxIntLoopCnt = rxIntLoopCnt; /* debug -baz */ }
#ifdef DEBUG if (rxIntLoopCnt == 0) { for (i = 0; i < LMC_RXDESCS; i++) { if ((sc->lmc_rxring[i].status & LMC_RDES_OWN_BIT) != DESC_OWNED_BY_DC21X4) { rxIntLoopCnt++; } } LMC_EVENT_LOG(LMC_EVENT_RCVEND, rxIntLoopCnt, 0); } #endif
lmc_led_off(sc, LMC_DS3_LED3);
skip_out_of_mem:
lmc_trace(dev, "lmc_rx out");
return 0; }
static struct net_device_stats *lmc_get_stats (struct net_device *dev) /*fold00*/ { lmc_softc_t *sc; LMC_SPIN_FLAGS;
lmc_trace(dev, "lmc_get_stats in");
sc = dev->priv;
spin_lock_irqsave(&sc->lmc_lock, flags);
sc->stats.rx_missed_errors += LMC_CSR_READ (sc, csr_missed_frames) & 0xffff;
spin_unlock_irqrestore(&sc->lmc_lock, flags);
lmc_trace(dev, "lmc_get_stats out");
return (struct net_device_stats *) &sc->stats; }
#ifdef MODULE
int init_module (void) /*fold00*/ { printk ("lmc: module loaded\n");
/* Have lmc_probe search for all the cards, and allocate devices */ if (lmc_probe (NULL) < 0) return -EIO;
return 0; }
void cleanup_module (void) /*fold00*/ { struct net_device *dev, *next; lmc_softc_t *sc;
/* we have no pointer to our devices, since they are all dynamically * allocated. So, here we loop through all the network devices * looking for ours. When found, dispose of them properly. */
for (dev = Lmc_root_dev; dev != NULL; dev = next ) {
next = ((lmc_softc_t *) dev->priv)->next_module; /* get it now before we deallocate it */ printk ("%s: removing...\n", dev->name);
/* close the syncppp stuff, and release irq. Close is run on unreg net */ lmc_close (dev); sc = dev->priv; if (sc != NULL) lmc_proto_detach(sc);
/* Remove the device from the linked list */ unregister_netdev (dev);
/* Let go of the io region */; release_region (dev->base_addr, LMC_REG_RANGE);
/* free our allocated structures. */ kfree (dev->priv); dev->priv = NULL;
kfree ((struct ppp_device *) dev); dev = NULL; }
Lmc_root_dev = NULL; printk ("lmc module unloaded\n"); } #endif
unsigned lmc_mii_readreg (lmc_softc_t * const sc, unsigned devaddr, unsigned regno) /*fold00*/ { int i; int command = (0xf6 << 10) | (devaddr << 5) | regno; int retval = 0;
lmc_trace(sc->lmc_device, "lmc_mii_readreg in");
LMC_MII_SYNC (sc);
lmc_trace(sc->lmc_device, "lmc_mii_readreg: done sync");
for (i = 15; i >= 0; i--) { int dataval = (command & (1 << i)) ? 0x20000 : 0;
LMC_CSR_WRITE (sc, csr_9, dataval); lmc_delay (); /* __SLOW_DOWN_IO; */ LMC_CSR_WRITE (sc, csr_9, dataval | 0x10000); lmc_delay (); /* __SLOW_DOWN_IO; */ }
lmc_trace(sc->lmc_device, "lmc_mii_readreg: done1");
for (i = 19; i > 0; i--) { LMC_CSR_WRITE (sc, csr_9, 0x40000); lmc_delay (); /* __SLOW_DOWN_IO; */ retval = (retval << 1) | ((LMC_CSR_READ (sc, csr_9) & 0x80000) ? 1 : 0); LMC_CSR_WRITE (sc, csr_9, 0x40000 | 0x10000); lmc_delay (); /* __SLOW_DOWN_IO; */ }
lmc_trace(sc->lmc_device, "lmc_mii_readreg out");
return (retval >> 1) & 0xffff; }
void lmc_mii_writereg (lmc_softc_t * const sc, unsigned devaddr, unsigned regno, unsigned data) /*fold00*/ { int i = 32; int command = (0x5002 << 16) | (devaddr << 23) | (regno << 18) | data;
lmc_trace(sc->lmc_device, "lmc_mii_writereg in");
LMC_MII_SYNC (sc);
i = 31; while (i >= 0) { int datav;
if (command & (1 << i)) datav = 0x20000; else datav = 0x00000;
LMC_CSR_WRITE (sc, csr_9, datav); lmc_delay (); /* __SLOW_DOWN_IO; */ LMC_CSR_WRITE (sc, csr_9, (datav | 0x10000)); lmc_delay (); /* __SLOW_DOWN_IO; */ i--; }
i = 2; while (i > 0) { LMC_CSR_WRITE (sc, csr_9, 0x40000); lmc_delay (); /* __SLOW_DOWN_IO; */ LMC_CSR_WRITE (sc, csr_9, 0x50000); lmc_delay (); /* __SLOW_DOWN_IO; */ i--; }
lmc_trace(sc->lmc_device, "lmc_mii_writereg out"); }
static void lmc_softreset (lmc_softc_t * const sc) /*fold00*/ { int i;
lmc_trace(sc->lmc_device, "lmc_softreset in");
/* Initialize the receive rings and buffers. */ sc->lmc_txfull = 0; sc->lmc_next_rx = 0; sc->lmc_next_tx = 0; sc->lmc_taint_rx = 0; sc->lmc_taint_tx = 0;
/* * Setup each one of the receiver buffers * allocate an skbuff for each one, setup the descriptor table * and point each buffer at the next one */
for (i = 0; i < LMC_RXDESCS; i++) { struct sk_buff *skb;
if (sc->lmc_rxq[i] == NULL) { skb = dev_alloc_skb (LMC_PKT_BUF_SZ + 2); if(skb == NULL){ printk(KERN_WARNING "%s: Failed to allocate receiver ring, will try again\n", sc->name); sc->failed_ring = 1; break; } else{ sc->lmc_rxq[i] = skb; } } else { skb = sc->lmc_rxq[i]; }
skb->dev = sc->lmc_device; LMC_SKB_FREE(skb, 1);
/* owned by 21140 */ sc->lmc_rxring[i].status = 0x80000000;
/* used to be PKT_BUF_SZ now uses skb since we loose some to head room */ sc->lmc_rxring[i].length = skb->end - skb->data;
/* use to be tail which is dumb since you're thinking why write * to the end of the packj,et but since there's nothing there tail == data */ sc->lmc_rxring[i].buffer1 = virt_to_bus (skb->data);
/* This is fair since the structure is static and we have the next address */ sc->lmc_rxring[i].buffer2 = virt_to_bus (&sc->lmc_rxring[i + 1]);
}
/* * Sets end of ring */ sc->lmc_rxring[i - 1].length |= 0x02000000; /* Set end of buffers flag */ sc->lmc_rxring[i - 1].buffer2 = virt_to_bus (&sc->lmc_rxring[0]); /* Point back to the start */ LMC_CSR_WRITE (sc, csr_rxlist, virt_to_bus (sc->lmc_rxring)); /* write base address */
/* Initialize the transmit rings and buffers */ for (i = 0; i < LMC_TXDESCS; i++) { if (sc->lmc_txq[i] != NULL){ /* have buffer */ dev_kfree_skb(sc->lmc_txq[i]); /* free it */ sc->stats.tx_dropped++; /* We just dropped a packet */ } sc->lmc_txq[i] = 0; sc->lmc_txring[i].status = 0x00000000; sc->lmc_txring[i].buffer2 = virt_to_bus (&sc->lmc_txring[i + 1]); } sc->lmc_txring[i - 1].buffer2 = virt_to_bus (&sc->lmc_txring[0]); LMC_CSR_WRITE (sc, csr_txlist, virt_to_bus (sc->lmc_txring));
lmc_trace(sc->lmc_device, "lmc_softreset out"); }
static int lmc_set_config(struct net_device *dev, struct ifmap *map) /*fold00*/ { lmc_trace(dev, "lmc_set_config in"); lmc_trace(dev, "lmc_set_config out"); return -EOPNOTSUPP; }
void lmc_gpio_mkinput(lmc_softc_t * const sc, u_int32_t bits) /*fold00*/ { lmc_trace(sc->lmc_device, "lmc_gpio_mkinput in"); sc->lmc_gpio_io &= ~bits; LMC_CSR_WRITE(sc, csr_gp, TULIP_GP_PINSET | (sc->lmc_gpio_io)); lmc_trace(sc->lmc_device, "lmc_gpio_mkinput out"); }
void lmc_gpio_mkoutput(lmc_softc_t * const sc, u_int32_t bits) /*fold00*/ { lmc_trace(sc->lmc_device, "lmc_gpio_mkoutput in"); sc->lmc_gpio_io |= bits; LMC_CSR_WRITE(sc, csr_gp, TULIP_GP_PINSET | (sc->lmc_gpio_io)); lmc_trace(sc->lmc_device, "lmc_gpio_mkoutput out"); }
void lmc_led_on(lmc_softc_t * const sc, u_int32_t led) /*fold00*/ { lmc_trace(sc->lmc_device, "lmc_led_on in"); if((~sc->lmc_miireg16) & led){ /* Already on! */ lmc_trace(sc->lmc_device, "lmc_led_on aon out"); return; } sc->lmc_miireg16 &= ~led; lmc_mii_writereg(sc, 0, 16, sc->lmc_miireg16); lmc_trace(sc->lmc_device, "lmc_led_on out"); }
void lmc_led_off(lmc_softc_t * const sc, u_int32_t led) /*fold00*/ { lmc_trace(sc->lmc_device, "lmc_led_off in"); if(sc->lmc_miireg16 & led){ /* Already set don't do anything */ lmc_trace(sc->lmc_device, "lmc_led_off aoff out"); return; } sc->lmc_miireg16 |= led; lmc_mii_writereg(sc, 0, 16, sc->lmc_miireg16); lmc_trace(sc->lmc_device, "lmc_led_off out"); }
static void lmc_reset(lmc_softc_t * const sc) /*fold00*/ { lmc_trace(sc->lmc_device, "lmc_reset in"); sc->lmc_miireg16 |= LMC_MII16_FIFO_RESET; lmc_mii_writereg(sc, 0, 16, sc->lmc_miireg16);
sc->lmc_miireg16 &= ~LMC_MII16_FIFO_RESET; lmc_mii_writereg(sc, 0, 16, sc->lmc_miireg16);
/* * make some of the GPIO pins be outputs */ lmc_gpio_mkoutput(sc, LMC_GEP_RESET);
/* * RESET low to force state reset. This also forces * the transmitter clock to be internal, but we expect to reset * that later anyway. */ sc->lmc_gpio &= ~(LMC_GEP_RESET); LMC_CSR_WRITE(sc, csr_gp, sc->lmc_gpio);
/* * hold for more than 10 microseconds */ udelay(50);
/* * stop driving Xilinx-related signals */ lmc_gpio_mkinput(sc, LMC_GEP_RESET);
/* * Call media specific init routine */ sc->lmc_media->init(sc);
sc->stats.resetCount++; lmc_trace(sc->lmc_device, "lmc_reset out"); }
static void lmc_dec_reset(lmc_softc_t * const sc) /*fold00*/ { u_int32_t val; lmc_trace(sc->lmc_device, "lmc_dec_reset in");
/* * disable all interrupts */ sc->lmc_intrmask = 0; LMC_CSR_WRITE(sc, csr_intr, sc->lmc_intrmask);
/* * Reset the chip with a software reset command. * Wait 10 microseconds (actually 50 PCI cycles but at * 33MHz that comes to two microseconds but wait a * bit longer anyways) */ LMC_CSR_WRITE(sc, csr_busmode, TULIP_BUSMODE_SWRESET); udelay(25); #ifdef __sparc__ sc->lmc_busmode = LMC_CSR_READ(sc, csr_busmode); sc->lmc_busmode = 0x00100000; sc->lmc_busmode &= ~TULIP_BUSMODE_SWRESET; LMC_CSR_WRITE(sc, csr_busmode, sc->lmc_busmode); #endif sc->lmc_cmdmode = LMC_CSR_READ(sc, csr_command);
/* * We want: * no ethernet address in frames we write * disable padding (txdesc, padding disable) * ignore runt frames (rdes0 bit 15) * no receiver watchdog or transmitter jabber timer * (csr15 bit 0,14 == 1) * if using 16-bit CRC, turn off CRC (trans desc, crc disable) */
sc->lmc_cmdmode |= ( TULIP_CMD_PROMISCUOUS | TULIP_CMD_FULLDUPLEX | TULIP_CMD_PASSBADPKT | TULIP_CMD_NOHEARTBEAT | TULIP_CMD_PORTSELECT | TULIP_CMD_RECEIVEALL | TULIP_CMD_MUSTBEONE ); sc->lmc_cmdmode &= ~( TULIP_CMD_OPERMODE | TULIP_CMD_THRESHOLDCTL | TULIP_CMD_STOREFWD | TULIP_CMD_TXTHRSHLDCTL );
LMC_CSR_WRITE(sc, csr_command, sc->lmc_cmdmode);
/* * disable receiver watchdog and transmit jabber */ val = LMC_CSR_READ(sc, csr_sia_general); val |= (TULIP_WATCHDOG_TXDISABLE | TULIP_WATCHDOG_RXDISABLE); LMC_CSR_WRITE(sc, csr_sia_general, val);
lmc_trace(sc->lmc_device, "lmc_dec_reset out"); }
static void lmc_initcsrs(lmc_softc_t * const sc, lmc_csrptr_t csr_base, /*fold00*/ size_t csr_size) { lmc_trace(sc->lmc_device, "lmc_initcsrs in"); sc->lmc_csrs.csr_busmode = csr_base + 0 * csr_size; sc->lmc_csrs.csr_txpoll = csr_base + 1 * csr_size; sc->lmc_csrs.csr_rxpoll = csr_base + 2 * csr_size; sc->lmc_csrs.csr_rxlist = csr_base + 3 * csr_size; sc->lmc_csrs.csr_txlist = csr_base + 4 * csr_size; sc->lmc_csrs.csr_status = csr_base + 5 * csr_size; sc->lmc_csrs.csr_command = csr_base + 6 * csr_size; sc->lmc_csrs.csr_intr = csr_base + 7 * csr_size; sc->lmc_csrs.csr_missed_frames = csr_base + 8 * csr_size; sc->lmc_csrs.csr_9 = csr_base + 9 * csr_size; sc->lmc_csrs.csr_10 = csr_base + 10 * csr_size; sc->lmc_csrs.csr_11 = csr_base + 11 * csr_size; sc->lmc_csrs.csr_12 = csr_base + 12 * csr_size; sc->lmc_csrs.csr_13 = csr_base + 13 * csr_size; sc->lmc_csrs.csr_14 = csr_base + 14 * csr_size; sc->lmc_csrs.csr_15 = csr_base + 15 * csr_size; lmc_trace(sc->lmc_device, "lmc_initcsrs out"); }
#if LINUX_VERSION_CODE >= 0x20363 static void lmc_driver_timeout(struct net_device *dev) { /*fold00*/ lmc_softc_t *sc; u32 csr6; LMC_SPIN_FLAGS;
lmc_trace(dev, "lmc_driver_timeout in");
sc = dev->priv;
spin_lock_irqsave(&sc->lmc_lock, flags);
printk("%s: Xmitter busy|\n", dev->name);
sc->stats.tx_tbusy_calls++ ; if (jiffies - dev->trans_start < TX_TIMEOUT) { goto bug_out; }
/* * Chip seems to have locked up * Reset it * This whips out all our decriptor * table and starts from scartch */
LMC_EVENT_LOG(LMC_EVENT_XMTPRCTMO, LMC_CSR_READ (sc, csr_status), sc->stats.tx_ProcTimeout);
lmc_running_reset (dev);
LMC_EVENT_LOG(LMC_EVENT_RESET1, LMC_CSR_READ (sc, csr_status), 0); LMC_EVENT_LOG(LMC_EVENT_RESET2, lmc_mii_readreg (sc, 0, 16), lmc_mii_readreg (sc, 0, 17));
/* restart the tx processes */ csr6 = LMC_CSR_READ (sc, csr_command); LMC_CSR_WRITE (sc, csr_command, csr6 | 0x0002); LMC_CSR_WRITE (sc, csr_command, csr6 | 0x2002);
/* immediate transmit */ LMC_CSR_WRITE (sc, csr_txpoll, 0);
sc->stats.tx_errors++; sc->stats.tx_ProcTimeout++; /* -baz */
dev->trans_start = jiffies;
bug_out:
spin_unlock_irqrestore(&sc->lmc_lock, flags);
lmc_trace(dev, "lmc_driver_timout out");
}
int lmc_setup(void) { /*FOLD00*/ return lmc_probe(NULL); }
#endif
|