!C99Shell v. 1.0 pre-release build #13!

Software: Apache/2.0.54 (Unix) mod_perl/1.99_09 Perl/v5.8.0 mod_ssl/2.0.54 OpenSSL/0.9.7l DAV/2 FrontPage/5.0.2.2635 PHP/4.4.0 mod_gzip/2.0.26.1a 

uname -a: Linux snow.he.net 4.4.276-v2-mono-1 #1 SMP Wed Jul 21 11:21:17 PDT 2021 i686 

uid=99(nobody) gid=98(nobody) groups=98(nobody) 

Safe-mode: OFF (not secure)

/usr/src/linux-2.4.18-xfs-1.1/drivers/isdn/hisax/   drwxr-xr-x
Free 318.29 GB of 458.09 GB (69.48%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     hfc_sx.c (43.1 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: hfc_sx.c,v 1.1.4.1 2001/11/20 14:19:35 kai Exp $
 *
 * level driver for CCD´s hfc-s+/sp based cards
 *
 * Author       Werner Cornelius
 *              based on existing driver for CCD HFC PCI cards
 * Copyright    by Werner Cornelius  <werner@isdn4linux.de>
 * 
 * This software may be used and distributed according to the terms
 * of the GNU General Public License, incorporated herein by reference.
 *
 */

#define __NO_VERSION__
#include <linux/init.h>
#include "hisax.h"
#include "hfc_sx.h"
#include "isdnl1.h"
#include <linux/interrupt.h>

extern const char *CardType[];

static const char *hfcsx_revision = "$Revision: 1.1.4.1 $";

/***************************************/
/* IRQ-table for CCDs demo board       */
/* IRQs 6,5,10,11,12,15 are supported  */
/***************************************/

/* Teles 16.3c Vendor Id TAG2620, Version 1.0, Vendor version 2.1
 *
 * Thanks to Uwe Wisniewski
 *
 * ISA-SLOT  Signal      PIN
 * B25        IRQ3     92 IRQ_G
 * B23        IRQ5     94 IRQ_A
 * B4         IRQ2/9   95 IRQ_B
 * D3         IRQ10    96 IRQ_C
 * D4         IRQ11    97 IRQ_D
 * D5         IRQ12    98 IRQ_E
 * D6         IRQ15    99 IRQ_F
 */

#undef CCD_DEMO_BOARD
#ifdef CCD_DEMO_BOARD
static u_char ccd_sp_irqtab[16] = {
  0,0,0,0,0,2,1,0,0,0,3,4,5,0,0,6
};
#else /* Teles 16.3c */
static u_char ccd_sp_irqtab[16] = {
  0,0,0,7,0,1,0,0,0,2,3,4,5,0,0,6
};
#endif
#define NT_T1_COUNT 20        /* number of 3.125ms interrupts for G2 timeout */

#define byteout(addr,val) outb(val,addr)
#define bytein(addr) inb(addr)

/******************************/
/* In/Out access to registers */
/******************************/
static inline void
Write_hfc(struct IsdnCardState *cs, u_char regnum, u_char val)
{       unsigned long flags;

        save_flags(flags);
    cli();
        byteout(cs->hw.hfcsx.base+1, regnum);
    byteout(cs->hw.hfcsx.base, val);
    restore_flags(flags);


static inline u_char
Read_hfc(struct IsdnCardState *cs, u_char regnum)
{       unsigned long flags;
        u_char ret; 

        save_flags(flags);
    cli();
        byteout(cs->hw.hfcsx.base+1, regnum);
    ret = bytein(cs->hw.hfcsx.base);
    restore_flags(flags);
    return(ret);



/**************************************************/
/* select a fifo and remember which one for reuse */
/**************************************************/
static void
fifo_select(struct IsdnCardState *cs, u_char fifo)
{       unsigned long flags;

        if (fifo == cs->hw.hfcsx.last_fifo) 
      return; /* still valid */

    save_flags(flags);
    cli();
        byteout(cs->hw.hfcsx.base+1, HFCSX_FIF_SEL);
    byteout(cs->hw.hfcsx.base, fifo);
    while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
    udelay(4);
    byteout(cs->hw.hfcsx.base, fifo);
    while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
    restore_flags(flags);
}

/******************************************/
/* reset the specified fifo to defaults.  */
/* If its a send fifo init needed markers */
/******************************************/
static void
reset_fifo(struct IsdnCardState *cs, u_char fifo)
{       unsigned long flags;

        save_flags(flags); 
    cli();
    fifo_select(cs, fifo); /* first select the fifo */
    byteout(cs->hw.hfcsx.base+1, HFCSX_CIRM);
    byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.cirm | 0x80); /* reset cmd */
    udelay(1);
    while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
    restore_flags(flags);



/*************************************************************/
/* write_fifo writes the skb contents to the desired fifo    */
/* if no space is available or an error occurs 0 is returned */
/* the skb is not released in any way.                       */
/*************************************************************/
static int
write_fifo(struct IsdnCardState *cs, struct sk_buff *skb, u_char fifo, int trans_max)
{       unsigned short *msp;
        int fifo_size, count, z1, z2;
    u_char f_msk, f1, f2, *src;

    if (skb->len <= 0) return(0);
        if (fifo & 1) return(0); /* no write fifo */

    fifo_select(cs, fifo);
    if (fifo & 4) {
      fifo_size = D_FIFO_SIZE; /* D-channel */
      f_msk = MAX_D_FRAMES;
      if (trans_max) return(0); /* only HDLC */
    }
    else {
      fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
      f_msk = MAX_B_FRAMES;
    }

        z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
    z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));

    /* Check for transparent mode */
    if (trans_max) {
      z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
      z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
      count = z2 - z1;
      if (count <= 0)
        count += fifo_size; /* free bytes */
      if (count < skb->len+1) return(0); /* no room */
      count = fifo_size - count; /* bytes still not send */
      if (count > 2 * trans_max) return(0); /* delay to long */
      count = skb->len;
      src = skb->data;
      while (count--)
        Write_hfc(cs, HFCSX_FIF_DWR, *src++);
      return(1); /* success */
    }

        msp = ((struct hfcsx_extra *)(cs->hw.hfcsx.extra))->marker;
    msp += (((fifo >> 1) & 3) * (MAX_B_FRAMES+1));
    f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
    f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;

    count = f1 - f2; /* frame count actually buffered */
    if (count < 0)
        count += (f_msk + 1);    /* if wrap around */
    if (count > f_msk-1) {
      if (cs->debug & L1_DEB_ISAC_FIFO)
        debugl1(cs, "hfcsx_write_fifo %d more as %d frames",fifo,f_msk-1);
      return(0);
    }

    *(msp + f1) = z1; /* remember marker */

    if (cs->debug & L1_DEB_ISAC_FIFO)
        debugl1(cs, "hfcsx_write_fifo %d f1(%x) f2(%x) z1(f1)(%x)",
            fifo, f1, f2, z1);
    /* now determine free bytes in FIFO buffer */
    count = *(msp + f2) - z1;
    if (count <= 0)
      count += fifo_size;    /* count now contains available bytes */

    if (cs->debug & L1_DEB_ISAC_FIFO)
      debugl1(cs, "hfcsx_write_fifo %d count(%ld/%d)",
          fifo, skb->len, count);
    if (count < skb->len) {
      if (cs->debug & L1_DEB_ISAC_FIFO)
        debugl1(cs, "hfcsx_write_fifo %d no fifo mem", fifo);
      return(0);
    }
    
    count = skb->len; /* get frame len */
    src = skb->data;    /* source pointer */
    while (count--)
      Write_hfc(cs, HFCSX_FIF_DWR, *src++);
    
    Read_hfc(cs, HFCSX_FIF_INCF1); /* increment F1 */
    udelay(1);
    while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
    return(1);


/***************************************************************/
/* read_fifo reads data to an skb from the desired fifo        */
/* if no data is available or an error occurs NULL is returned */
/* the skb is not released in any way.                         */
/***************************************************************/
static struct sk_buff * 
read_fifo(struct IsdnCardState *cs, u_char fifo, int trans_max)
{       int fifo_size, count, z1, z2;
    u_char f_msk, f1, f2, *dst;
    struct sk_buff *skb;

        if (!(fifo & 1)) return(NULL); /* no read fifo */
    fifo_select(cs, fifo);
    if (fifo & 4) {
      fifo_size = D_FIFO_SIZE; /* D-channel */
      f_msk = MAX_D_FRAMES;
      if (trans_max) return(NULL); /* only hdlc */
    }
    else {
      fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
      f_msk = MAX_B_FRAMES;
    }

    /* transparent mode */
    if (trans_max) {
      z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
      z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
      z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
      z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
      /* now determine bytes in actual FIFO buffer */
      count = z1 - z2;
      if (count <= 0)
        count += fifo_size;    /* count now contains buffered bytes */
      count++;
      if (count > trans_max) 
        count = trans_max; /* limit length */
        if ((skb = dev_alloc_skb(count))) {
          dst = skb_put(skb, count);
          while (count--) 
        *dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
          return(skb);
        }
        else return(NULL); /* no memory */
    }

    do {
      f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
      f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;

      if (f1 == f2) return(NULL); /* no frame available */

      z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
      z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
      z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
      z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));

      if (cs->debug & L1_DEB_ISAC_FIFO)
        debugl1(cs, "hfcsx_read_fifo %d f1(%x) f2(%x) z1(f2)(%x) z2(f2)(%x)",
            fifo, f1, f2, z1, z2);
      /* now determine bytes in actual FIFO buffer */
      count = z1 - z2;
      if (count <= 0)
        count += fifo_size;    /* count now contains buffered bytes */
      count++;

      if (cs->debug & L1_DEB_ISAC_FIFO)
        debugl1(cs, "hfcsx_read_fifo %d count %ld)",
            fifo, count);

      if ((count > fifo_size) || (count < 4)) {
        if (cs->debug & L1_DEB_WARN)
          debugl1(cs, "hfcsx_read_fifo %d paket inv. len %d ", fifo , count);
        while (count) {
          count--; /* empty fifo */
          Read_hfc(cs, HFCSX_FIF_DRD);
        }
        skb = NULL;
      } else 
        if ((skb = dev_alloc_skb(count - 3))) {
          count -= 3;
          dst = skb_put(skb, count);

          while (count--) 
        *dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
            
          Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 1 */
          Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 2 */
          if (Read_hfc(cs, HFCSX_FIF_DRD)) {
        dev_kfree_skb_irq(skb);
        if (cs->debug & L1_DEB_ISAC_FIFO)
          debugl1(cs, "hfcsx_read_fifo %d crc error", fifo);
        skb = NULL;
          }
        } else {
          printk(KERN_WARNING "HFC-SX: receive out of memory\n");
          return(NULL);
        }

      Read_hfc(cs, HFCSX_FIF_INCF2); /* increment F2 */
      udelay(1);
      while (bytein(cs->hw.hfcsx.base+1) & 1); /* wait for busy */
      udelay(1);
    } while (!skb); /* retry in case of crc error */
    return(skb);


/******************************************/
/* free hardware resources used by driver */
/******************************************/
void
release_io_hfcsx(struct IsdnCardState *cs)
{
    unsigned long flags;

    save_flags(flags);
    cli();
    cs->hw.hfcsx.int_m2 = 0;    /* interrupt output off ! */
    Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
    restore_flags(flags);
    Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET);    /* Reset On */
    sti();
    set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_timeout((30 * HZ) / 1000);    /* Timeout 30ms */
    Write_hfc(cs, HFCSX_CIRM, 0);    /* Reset Off */
    del_timer(&cs->hw.hfcsx.timer);
    release_region(cs->hw.hfcsx.base, 2); /* release IO-Block */
    kfree(cs->hw.hfcsx.extra);
    cs->hw.hfcsx.extra = NULL;
}

/**********************************************************/
/* set_fifo_size determines the size of the RAM and FIFOs */
/* returning 0 -> need to reset the chip again.           */
/**********************************************************/
static int set_fifo_size(struct IsdnCardState *cs)
{
        
        if (cs->hw.hfcsx.b_fifo_size) return(1); /* already determined */

    if ((cs->hw.hfcsx.chip >> 4) == 9) {
      cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_32K;
      return(1);
    }

      cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_8K;
      cs->hw.hfcsx.cirm |= 0x10; /* only 8K of ram */
      return(0);

}

/********************************************************************************/
/* function called to reset the HFC SX chip. A complete software reset of chip */
/* and fifos is done.                                                           */
/********************************************************************************/
static void
reset_hfcsx(struct IsdnCardState *cs)
{
    long flags;

    save_flags(flags);
    cli();
    cs->hw.hfcsx.int_m2 = 0;    /* interrupt output off ! */
    Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);

    printk(KERN_INFO "HFC_SX: resetting card\n");
    while (1) {
      Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET | cs->hw.hfcsx.cirm ); /* Reset */
      sti();
      set_current_state(TASK_UNINTERRUPTIBLE);
      schedule_timeout((30 * HZ) / 1000);    /* Timeout 30ms */
      Write_hfc(cs, HFCSX_CIRM, cs->hw.hfcsx.cirm); /* Reset Off */
      set_current_state(TASK_UNINTERRUPTIBLE);
      schedule_timeout((20 * HZ) / 1000);    /* Timeout 20ms */
      if (Read_hfc(cs, HFCSX_STATUS) & 2)
        printk(KERN_WARNING "HFC-SX init bit busy\n");
      cs->hw.hfcsx.last_fifo = 0xff; /* invalidate */
      if (!set_fifo_size(cs)) continue;
      break;
    }

    cs->hw.hfcsx.trm = 0 + HFCSX_BTRANS_THRESMASK;    /* no echo connect , threshold */
    Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);

    Write_hfc(cs, HFCSX_CLKDEL, 0x0e);    /* ST-Bit delay for TE-Mode */
    cs->hw.hfcsx.sctrl_e = HFCSX_AUTO_AWAKE;
    Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);    /* S/T Auto awake */
    cs->hw.hfcsx.bswapped = 0;    /* no exchange */
    cs->hw.hfcsx.nt_mode = 0;    /* we are in TE mode */
    cs->hw.hfcsx.ctmt = HFCSX_TIM3_125 | HFCSX_AUTO_TIMER;
    Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);

    cs->hw.hfcsx.int_m1 = HFCSX_INTS_DTRANS | HFCSX_INTS_DREC | 
        HFCSX_INTS_L1STATE | HFCSX_INTS_TIMER;
    Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);

    /* Clear already pending ints */
    if (Read_hfc(cs, HFCSX_INT_S1));

    Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 2);    /* HFC ST 2 */
    udelay(10);
    Write_hfc(cs, HFCSX_STATES, 2);    /* HFC ST 2 */
    cs->hw.hfcsx.mst_m = HFCSX_MASTER;    /* HFC Master Mode */

    Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
    cs->hw.hfcsx.sctrl = 0x40;    /* set tx_lo mode, error in datasheet ! */
    Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
    cs->hw.hfcsx.sctrl_r = 0;
    Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);

    /* Init GCI/IOM2 in master mode */
    /* Slots 0 and 1 are set for B-chan 1 and 2 */
    /* D- and monitor/CI channel are not enabled */
    /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
    /* STIO2 is used as data input, B1+B2 from IOM->ST */
    /* ST B-channel send disabled -> continous 1s */
    /* The IOM slots are always enabled */
    cs->hw.hfcsx.conn = 0x36;    /* set data flow directions */
    Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
    Write_hfc(cs, HFCSX_B1_SSL, 0x80);    /* B1-Slot 0 STIO1 out enabled */
    Write_hfc(cs, HFCSX_B2_SSL, 0x81);    /* B2-Slot 1 STIO1 out enabled */
    Write_hfc(cs, HFCSX_B1_RSL, 0x80);    /* B1-Slot 0 STIO2 in enabled */
    Write_hfc(cs, HFCSX_B2_RSL, 0x81);    /* B2-Slot 1 STIO2 in enabled */

    /* Finally enable IRQ output */
    cs->hw.hfcsx.int_m2 = HFCSX_IRQ_ENABLE;
    Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
    if (Read_hfc(cs, HFCSX_INT_S2));
    restore_flags(flags);
}

/***************************************************/
/* Timer function called when kernel timer expires */
/***************************************************/
static void
hfcsx_Timer(struct IsdnCardState *cs)
{
    cs->hw.hfcsx.timer.expires = jiffies + 75;
    /* WD RESET */
/*      WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcsx.ctmt | 0x80);
   add_timer(&cs->hw.hfcsx.timer);
 */
}


/*********************************/
/* schedule a new D-channel task */
/*********************************/
static void
sched_event_D_sx(struct IsdnCardState *cs, int event)
{
    test_and_set_bit(event, &cs->event);
    queue_task(&cs->tqueue, &tq_immediate);
    mark_bh(IMMEDIATE_BH);
}

/*********************************/
/* schedule a new b_channel task */
/*********************************/
static void
hfcsx_sched_event(struct BCState *bcs, int event)
{
    bcs->event |= 1 << event;
    queue_task(&bcs->tqueue, &tq_immediate);
    mark_bh(IMMEDIATE_BH);
}

/************************************************/
/* select a b-channel entry matching and active */
/************************************************/
static
struct BCState *
Sel_BCS(struct IsdnCardState *cs, int channel)
{
    if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
        return (&cs->bcs[0]);
    else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
        return (&cs->bcs[1]);
    else
        return (NULL);
}

/*******************************/
/* D-channel receive procedure */
/*******************************/
static
int
receive_dmsg(struct IsdnCardState *cs)
{
    struct sk_buff *skb;
    int count = 5;

    if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
        debugl1(cs, "rec_dmsg blocked");
        return (1);
    }

    do {
      skb = read_fifo(cs, HFCSX_SEL_D_RX, 0);
      if (skb) {
        skb_queue_tail(&cs->rq, skb);
        sched_event_D_sx(cs, D_RCVBUFREADY);
      }
    } while (--count && skb);

    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    return (1);
}

/**********************************/
/* B-channel main receive routine */
/**********************************/
void
main_rec_hfcsx(struct BCState *bcs)
{
    long flags;
    struct IsdnCardState *cs = bcs->cs;
    int count = 5;
    struct sk_buff *skb;

    save_flags(flags);
      
      Begin:
    count--;
    cli();
    if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
        debugl1(cs, "rec_data %d blocked", bcs->channel);
        restore_flags(flags);
        return;
    }
    sti();
    skb = read_fifo(cs, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ? 
            HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX,
            (bcs->mode == L1_MODE_TRANS) ? 
            HFCSX_BTRANS_THRESHOLD : 0);

    if (skb) {
      cli();
      skb_queue_tail(&bcs->rqueue, skb);
      sti();
      hfcsx_sched_event(bcs, B_RCVBUFREADY);
    }

    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    if (count && skb)
        goto Begin;
    restore_flags(flags);
    return;
}

/**************************/
/* D-channel send routine */
/**************************/
static void
hfcsx_fill_dfifo(struct IsdnCardState *cs)
{
    if (!cs->tx_skb)
        return;
    if (cs->tx_skb->len <= 0)
        return;

    if (write_fifo(cs, cs->tx_skb, HFCSX_SEL_D_TX, 0)) {
      dev_kfree_skb_any(cs->tx_skb);
      cs->tx_skb = NULL;
    }
    return;
}

/**************************/
/* B-channel send routine */
/**************************/
static void
hfcsx_fill_fifo(struct BCState *bcs)
{
    struct IsdnCardState *cs = bcs->cs;
    unsigned long flags;

    if (!bcs->tx_skb)
        return;
    if (bcs->tx_skb->len <= 0)
        return;

    save_flags(flags);
    sti();

    if (write_fifo(cs, bcs->tx_skb, 
               ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ? 
               HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX,
               (bcs->mode == L1_MODE_TRANS) ? 
               HFCSX_BTRANS_THRESHOLD : 0)) {

      bcs->tx_cnt -= bcs->tx_skb->len;
      if (bcs->st->lli.l1writewakeup &&
          (PACKET_NOACK != bcs->tx_skb->pkt_type))
        bcs->st->lli.l1writewakeup(bcs->st, bcs->tx_skb->len);
      dev_kfree_skb_any(bcs->tx_skb);
      bcs->tx_skb = NULL;
      test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
    }

    cli();
    restore_flags(flags);
    return;
}

/**********************************************/
/* D-channel l1 state call for leased NT-mode */
/**********************************************/
static void
dch_nt_l2l1(struct PStack *st, int pr, void *arg)
{
    struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;

    switch (pr) {
        case (PH_DATA | REQUEST):
        case (PH_PULL | REQUEST):
        case (PH_PULL | INDICATION):
            st->l1.l1hw(st, pr, arg);
            break;
        case (PH_ACTIVATE | REQUEST):
            st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
            break;
        case (PH_TESTLOOP | REQUEST):
            if (1 & (long) arg)
                debugl1(cs, "PH_TEST_LOOP B1");
            if (2 & (long) arg)
                debugl1(cs, "PH_TEST_LOOP B2");
            if (!(3 & (long) arg))
                debugl1(cs, "PH_TEST_LOOP DISABLED");
            st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
            break;
        default:
            if (cs->debug)
                debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
            break;
    }
}



/***********************/
/* set/reset echo mode */
/***********************/
static int
hfcsx_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
{
    unsigned long flags;
    int i = *(unsigned int *) ic->parm.num;

    if ((ic->arg == 98) &&
        (!(cs->hw.hfcsx.int_m1 & (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC + HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC)))) {
        save_flags(flags);
        cli();
        Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 0);    /* HFC ST G0 */
        udelay(10);
        cs->hw.hfcsx.sctrl |= SCTRL_MODE_NT;
        Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);    /* set NT-mode */
        udelay(10);
        Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 1);    /* HFC ST G1 */
        udelay(10);
        Write_hfc(cs, HFCSX_STATES, 1 | HFCSX_ACTIVATE | HFCSX_DO_ACTION);
        cs->dc.hfcsx.ph_state = 1;
        cs->hw.hfcsx.nt_mode = 1;
        cs->hw.hfcsx.nt_timer = 0;
        cs->stlist->l2.l2l1 = dch_nt_l2l1;
        restore_flags(flags);
        debugl1(cs, "NT mode activated");
        return (0);
    }
    if ((cs->chanlimit > 1) || (cs->hw.hfcsx.bswapped) ||
        (cs->hw.hfcsx.nt_mode) || (ic->arg != 12))
        return (-EINVAL);

    save_flags(flags);
    cli();
    if (i) {
        cs->logecho = 1;
        cs->hw.hfcsx.trm |= 0x20;    /* enable echo chan */
        cs->hw.hfcsx.int_m1 |= HFCSX_INTS_B2REC;
        /* reset Channel !!!!! */
    } else {
        cs->logecho = 0;
        cs->hw.hfcsx.trm &= ~0x20;    /* disable echo chan */
        cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_B2REC;
    }
    cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
    cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
    cs->hw.hfcsx.conn |= 0x10;    /* B2-IOM -> B2-ST */
    cs->hw.hfcsx.ctmt &= ~2;
    Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
    Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
    Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
    Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
    Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
    Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
    restore_flags(flags);
    return (0);
}                /* hfcsx_auxcmd */

/*****************************/
/* E-channel receive routine */
/*****************************/
static void
receive_emsg(struct IsdnCardState *cs)
{
    unsigned long flags;
    int count = 5;
    u_char *ptr;
    struct sk_buff *skb;


    save_flags(flags);
    cli();
    if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
        debugl1(cs, "echo_rec_data blocked");
        restore_flags(flags);
        return;
    }
    sti();

    do {
      skb = read_fifo(cs, HFCSX_SEL_B2_RX, 0);
      if (skb) {
        if (cs->debug & DEB_DLOG_HEX) {
          ptr = cs->dlog;
          if ((skb->len) < MAX_DLOG_SPACE / 3 - 10) {
        *ptr++ = 'E';
        *ptr++ = 'C';
        *ptr++ = 'H';
        *ptr++ = 'O';
        *ptr++ = ':';
        ptr += QuickHex(ptr, skb->data, skb->len);
        ptr--;
        *ptr++ = '\n';
        *ptr = 0;
        HiSax_putstatus(cs, NULL, cs->dlog);
          } else
        HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", skb->len);
        }
        dev_kfree_skb_any(skb);
      }
    } while (--count && skb);

    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    restore_flags(flags);
    return;
}                /* receive_emsg */


/*********************/
/* Interrupt handler */
/*********************/
static void
hfcsx_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
    struct IsdnCardState *cs = dev_id;
    u_char exval;
    struct BCState *bcs;
    int count = 15;
    long flags;
    u_char val, stat;

    if (!cs) {
        printk(KERN_WARNING "HFC-SX: Spurious interrupt!\n");
        return;
    }
    if (!(cs->hw.hfcsx.int_m2 & 0x08))
        return;        /* not initialised */

    if (HFCSX_ANYINT & (stat = Read_hfc(cs, HFCSX_STATUS))) {
        val = Read_hfc(cs, HFCSX_INT_S1);
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "HFC-SX: stat(%02x) s1(%02x)", stat, val);
    } else
        return;

    if (cs->debug & L1_DEB_ISAC)
        debugl1(cs, "HFC-SX irq %x %s", val,
            test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
            "locked" : "unlocked");
    val &= cs->hw.hfcsx.int_m1;
    if (val & 0x40) {    /* state machine irq */
        exval = Read_hfc(cs, HFCSX_STATES) & 0xf;
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcsx.ph_state,
                exval);
        cs->dc.hfcsx.ph_state = exval;
        sched_event_D_sx(cs, D_L1STATECHANGE);
        val &= ~0x40;
    }
    if (val & 0x80) {    /* timer irq */
        if (cs->hw.hfcsx.nt_mode) {
            if ((--cs->hw.hfcsx.nt_timer) < 0)
                sched_event_D_sx(cs, D_L1STATECHANGE);
        }
        val &= ~0x80;
        Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
    }
    while (val) {
        save_flags(flags);
        cli();
        if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
            cs->hw.hfcsx.int_s1 |= val;
            restore_flags(flags);
            return;
        }
        if (cs->hw.hfcsx.int_s1 & 0x18) {
            exval = val;
            val = cs->hw.hfcsx.int_s1;
            cs->hw.hfcsx.int_s1 = exval;
        }
        if (val & 0x08) {
            if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
                if (cs->debug)
                    debugl1(cs, "hfcsx spurious 0x08 IRQ");
            } else
                main_rec_hfcsx(bcs);
        }
        if (val & 0x10) {
            if (cs->logecho)
                receive_emsg(cs);
            else if (!(bcs = Sel_BCS(cs, 1))) {
                if (cs->debug)
                    debugl1(cs, "hfcsx spurious 0x10 IRQ");
            } else
                main_rec_hfcsx(bcs);
        }
        if (val & 0x01) {
            if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
                if (cs->debug)
                    debugl1(cs, "hfcsx spurious 0x01 IRQ");
            } else {
                if (bcs->tx_skb) {
                    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                        hfcsx_fill_fifo(bcs);
                        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                    } else
                        debugl1(cs, "fill_data %d blocked", bcs->channel);
                } else {
                    if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
                        if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                            hfcsx_fill_fifo(bcs);
                            test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                        } else
                            debugl1(cs, "fill_data %d blocked", bcs->channel);
                    } else {
                        hfcsx_sched_event(bcs, B_XMTBUFREADY);
                    }
                }
            }
        }
        if (val & 0x02) {
            if (!(bcs = Sel_BCS(cs, 1))) {
                if (cs->debug)
                    debugl1(cs, "hfcsx spurious 0x02 IRQ");
            } else {
                if (bcs->tx_skb) {
                    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                        hfcsx_fill_fifo(bcs);
                        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                    } else
                        debugl1(cs, "fill_data %d blocked", bcs->channel);
                } else {
                    if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
                        if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                            hfcsx_fill_fifo(bcs);
                            test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                        } else
                            debugl1(cs, "fill_data %d blocked", bcs->channel);
                    } else {
                        hfcsx_sched_event(bcs, B_XMTBUFREADY);
                    }
                }
            }
        }
        if (val & 0x20) {    /* receive dframe */
            receive_dmsg(cs);
        }
        if (val & 0x04) {    /* dframe transmitted */
            if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
                del_timer(&cs->dbusytimer);
            if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
                sched_event_D_sx(cs, D_CLEARBUSY);
            if (cs->tx_skb) {
                if (cs->tx_skb->len) {
                    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                        hfcsx_fill_dfifo(cs);
                        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                    } else {
                        debugl1(cs, "hfcsx_fill_dfifo irq blocked");
                    }
                    goto afterXPR;
                } else {
                    dev_kfree_skb_irq(cs->tx_skb);
                    cs->tx_cnt = 0;
                    cs->tx_skb = NULL;
                }
            }
            if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
                cs->tx_cnt = 0;
                if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                    hfcsx_fill_dfifo(cs);
                    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                } else {
                    debugl1(cs, "hfcsx_fill_dfifo irq blocked");
                }
            } else
                sched_event_D_sx(cs, D_XMTBUFREADY);
        }
          afterXPR:
        if (cs->hw.hfcsx.int_s1 && count--) {
            val = cs->hw.hfcsx.int_s1;
            cs->hw.hfcsx.int_s1 = 0;
            if (cs->debug & L1_DEB_ISAC)
                debugl1(cs, "HFC-SX irq %x loop %d", val, 15 - count);
        } else
            val = 0;
        restore_flags(flags);
    }
}

/********************************************************************/
/* timer callback for D-chan busy resolution. Currently no function */
/********************************************************************/
static void
hfcsx_dbusy_timer(struct IsdnCardState *cs)
{
}

/*************************************/
/* Layer 1 D-channel hardware access */
/*************************************/
static void
HFCSX_l1hw(struct PStack *st, int pr, void *arg)
{
    struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
    struct sk_buff *skb = arg;
    unsigned long flags;

    switch (pr) {
        case (PH_DATA | REQUEST):
            if (cs->debug & DEB_DLOG_HEX)
                LogFrame(cs, skb->data, skb->len);
            if (cs->debug & DEB_DLOG_VERBOSE)
                dlogframe(cs, skb, 0);
            if (cs->tx_skb) {
                skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG        /* psa */
                if (cs->debug & L1_DEB_LAPD)
                    Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
            } else {
                cs->tx_skb = skb;
                cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG        /* psa */
                if (cs->debug & L1_DEB_LAPD)
                    Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
                if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                        hfcsx_fill_dfifo(cs); 
                    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                } else
                    debugl1(cs, "hfcsx_fill_dfifo blocked");

            }
            break;
        case (PH_PULL | INDICATION):
            if (cs->tx_skb) {
                if (cs->debug & L1_DEB_WARN)
                    debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
                skb_queue_tail(&cs->sq, skb);
                break;
            }
            if (cs->debug & DEB_DLOG_HEX)
                LogFrame(cs, skb->data, skb->len);
            if (cs->debug & DEB_DLOG_VERBOSE)
                dlogframe(cs, skb, 0);
            cs->tx_skb = skb;
            cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG        /* psa */
            if (cs->debug & L1_DEB_LAPD)
                Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
            if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                hfcsx_fill_dfifo(cs); 
                test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
            } else
                debugl1(cs, "hfcsx_fill_dfifo blocked");
            break;
        case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG        /* psa */
            if (cs->debug & L1_DEB_LAPD)
                debugl1(cs, "-> PH_REQUEST_PULL");
#endif
            if (!cs->tx_skb) {
                test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
                st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
            } else
                test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
            break;
        case (HW_RESET | REQUEST):
            Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 3);    /* HFC ST 3 */
            udelay(6);
            Write_hfc(cs, HFCSX_STATES, 3);    /* HFC ST 2 */
            cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
            Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
            Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
            l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
            break;
        case (HW_ENABLE | REQUEST):
            Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
            break;
        case (HW_DEACTIVATE | REQUEST):
            cs->hw.hfcsx.mst_m &= ~HFCSX_MASTER;
            Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
            break;
        case (HW_INFO3 | REQUEST):
            cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
            Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
            break;
        case (HW_TESTLOOP | REQUEST):
            switch ((int) arg) {
                case (1):
                    Write_hfc(cs, HFCSX_B1_SSL, 0x80);    /* tx slot */
                    Write_hfc(cs, HFCSX_B1_RSL, 0x80);    /* rx slot */
                    save_flags(flags);
                    cli();
                    cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~7) | 1;
                    Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
                    restore_flags(flags);
                    break;

                case (2):
                    Write_hfc(cs, HFCSX_B2_SSL, 0x81);    /* tx slot */
                    Write_hfc(cs, HFCSX_B2_RSL, 0x81);    /* rx slot */
                    save_flags(flags);
                    cli();
                    cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~0x38) | 0x08;
                    Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
                    restore_flags(flags);
                    break;

                default:
                    if (cs->debug & L1_DEB_WARN)
                        debugl1(cs, "hfcsx_l1hw loop invalid %4x", (int) arg);
                    return;
            }
            save_flags(flags);
            cli();
            cs->hw.hfcsx.trm |= 0x80;    /* enable IOM-loop */
            Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
            restore_flags(flags);
            break;
        default:
            if (cs->debug & L1_DEB_WARN)
                debugl1(cs, "hfcsx_l1hw unknown pr %4x", pr);
            break;
    }
}

/***********************************************/
/* called during init setting l1 stack pointer */
/***********************************************/
void
setstack_hfcsx(struct PStack *st, struct IsdnCardState *cs)
{
    st->l1.l1hw = HFCSX_l1hw;
}

/**************************************/
/* send B-channel data if not blocked */
/**************************************/
static void
hfcsx_send_data(struct BCState *bcs)
{
    struct IsdnCardState *cs = bcs->cs;

    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
      hfcsx_fill_fifo(bcs);
        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    } else
        debugl1(cs, "send_data %d blocked", bcs->channel);
}

/***************************************************************/
/* activate/deactivate hardware for selected channels and mode */
/***************************************************************/
void
mode_hfcsx(struct BCState *bcs, int mode, int bc)
{
    struct IsdnCardState *cs = bcs->cs;
    unsigned long flags;
    int fifo2;

    if (cs->debug & L1_DEB_HSCX)
        debugl1(cs, "HFCSX bchannel mode %d bchan %d/%d",
            mode, bc, bcs->channel);
    bcs->mode = mode;
    bcs->channel = bc;
    fifo2 = bc;
    save_flags(flags);
    cli();
    if (cs->chanlimit > 1) {
        cs->hw.hfcsx.bswapped = 0;    /* B1 and B2 normal mode */
        cs->hw.hfcsx.sctrl_e &= ~0x80;
    } else {
        if (bc) {
            if (mode != L1_MODE_NULL) {
                cs->hw.hfcsx.bswapped = 1;    /* B1 and B2 exchanged */
                cs->hw.hfcsx.sctrl_e |= 0x80;
            } else {
                cs->hw.hfcsx.bswapped = 0;    /* B1 and B2 normal mode */
                cs->hw.hfcsx.sctrl_e &= ~0x80;
            }
            fifo2 = 0;
        } else {
            cs->hw.hfcsx.bswapped = 0;    /* B1 and B2 normal mode */
            cs->hw.hfcsx.sctrl_e &= ~0x80;
        }
    }
    switch (mode) {
        case (L1_MODE_NULL):
            if (bc) {
                cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
                cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
            } else {
                cs->hw.hfcsx.sctrl &= ~SCTRL_B1_ENA;
                cs->hw.hfcsx.sctrl_r &= ~SCTRL_B1_ENA;
            }
            if (fifo2) {
                cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
            } else {
                cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
            }
            break;
        case (L1_MODE_TRANS):
            if (bc) {
                cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
                cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
            } else {
                cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
                cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
            }
            if (fifo2) {
                cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
                cs->hw.hfcsx.ctmt |= 2;
                cs->hw.hfcsx.conn &= ~0x18;
            } else {
                cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
                cs->hw.hfcsx.ctmt |= 1;
                cs->hw.hfcsx.conn &= ~0x03;
            }
            break;
        case (L1_MODE_HDLC):
            if (bc) {
                cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
                cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
            } else {
                cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
                cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
            }
            if (fifo2) {
                cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
                cs->hw.hfcsx.ctmt &= ~2;
                cs->hw.hfcsx.conn &= ~0x18;
            } else {
                cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
                cs->hw.hfcsx.ctmt &= ~1;
                cs->hw.hfcsx.conn &= ~0x03;
            }
            break;
        case (L1_MODE_EXTRN):
            if (bc) {
                cs->hw.hfcsx.conn |= 0x10;
                cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
                cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
                cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
            } else {
                cs->hw.hfcsx.conn |= 0x02;
                cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
                cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
                cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
            }
            break;
    }
    Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);
    Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
    Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
    Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
    Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
    Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
    if (mode != L1_MODE_EXTRN) {
      reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX);
      reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX);
    }
    restore_flags(flags);
}

/******************************/
/* Layer2 -> Layer 1 Transfer */
/******************************/
static void
hfcsx_l2l1(struct PStack *st, int pr, void *arg)
{
    struct sk_buff *skb = arg;
    long flags;

    switch (pr) {
        case (PH_DATA | REQUEST):
            save_flags(flags);
            cli();
            if (st->l1.bcs->tx_skb) {
                skb_queue_tail(&st->l1.bcs->squeue, skb);
                restore_flags(flags);
            } else {
                st->l1.bcs->tx_skb = skb;
/*                              test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
 */ st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
                restore_flags(flags);
            }
            break;
        case (PH_PULL | INDICATION):
            if (st->l1.bcs->tx_skb) {
                printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
                break;
            }
            save_flags(flags);
            cli();
/*                      test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
 */ st->l1.bcs->tx_skb = skb;
            st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
            restore_flags(flags);
            break;
        case (PH_PULL | REQUEST):
            if (!st->l1.bcs->tx_skb) {
                test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
                st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
            } else
                test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
            break;
        case (PH_ACTIVATE | REQUEST):
            test_and_set_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
            mode_hfcsx(st->l1.bcs, st->l1.mode, st->l1.bc);
            l1_msg_b(st, pr, arg);
            break;
        case (PH_DEACTIVATE | REQUEST):
            l1_msg_b(st, pr, arg);
            break;
        case (PH_DEACTIVATE | CONFIRM):
            test_and_clear_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
            test_and_clear_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
            mode_hfcsx(st->l1.bcs, 0, st->l1.bc);
            st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
            break;
    }
}

/******************************************/
/* deactivate B-channel access and queues */
/******************************************/
static void
close_hfcsx(struct BCState *bcs)
{
    mode_hfcsx(bcs, 0, bcs->channel);
    if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
        skb_queue_purge(&bcs->rqueue);
        skb_queue_purge(&bcs->squeue);
        if (bcs->tx_skb) {
            dev_kfree_skb_any(bcs->tx_skb);
            bcs->tx_skb = NULL;
            test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
        }
    }
}

/*************************************/
/* init B-channel queues and control */
/*************************************/
static int
open_hfcsxstate(struct IsdnCardState *cs, struct BCState *bcs)
{
    if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
        skb_queue_head_init(&bcs->rqueue);
        skb_queue_head_init(&bcs->squeue);
    }
    bcs->tx_skb = NULL;
    test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
    bcs->event = 0;
    bcs->tx_cnt = 0;
    return (0);
}

/*********************************/
/* inits the stack for B-channel */
/*********************************/
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
    bcs->channel = st->l1.bc;
    if (open_hfcsxstate(st->l1.hardware, bcs))
        return (-1);
    st->l1.bcs = bcs;
    st->l2.l2l1 = hfcsx_l2l1;
    setstack_manager(st);
    bcs->st = st;
    setstack_l1_B(st);
    return (0);
}

/***************************/
/* handle L1 state changes */
/***************************/
static void
hfcsx_bh(struct IsdnCardState *cs)
{
    unsigned long flags;
/*      struct PStack *stptr;
 */
    if (!cs)
        return;
    if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
        if (!cs->hw.hfcsx.nt_mode)
            switch (cs->dc.hfcsx.ph_state) {
                case (0):
                    l1_msg(cs, HW_RESET | INDICATION, NULL);
                    break;
                case (3):
                    l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
                    break;
                case (8):
                    l1_msg(cs, HW_RSYNC | INDICATION, NULL);
                    break;
                case (6):
                    l1_msg(cs, HW_INFO2 | INDICATION, NULL);
                    break;
                case (7):
                    l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
                    break;
                default:
                    break;
        } else {
            switch (cs->dc.hfcsx.ph_state) {
                case (2):
                    save_flags(flags);
                    cli();
                    if (cs->hw.hfcsx.nt_timer < 0) {
                        cs->hw.hfcsx.nt_timer = 0;
                        cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
                        Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
                        /* Clear already pending ints */
                        if (Read_hfc(cs, HFCSX_INT_S1));

                        Write_hfc(cs, HFCSX_STATES, 4 | HFCSX_LOAD_STATE);
                        udelay(10);
                        Write_hfc(cs, HFCSX_STATES, 4);
                        cs->dc.hfcsx.ph_state = 4;
                    } else {
                        cs->hw.hfcsx.int_m1 |= HFCSX_INTS_TIMER;
                        Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
                        cs->hw.hfcsx.ctmt &= ~HFCSX_AUTO_TIMER;
                        cs->hw.hfcsx.ctmt |= HFCSX_TIM3_125;
                        Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
                        Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
                        cs->hw.hfcsx.nt_timer = NT_T1_COUNT;
                        Write_hfc(cs, HFCSX_STATES, 2 | HFCSX_NT_G2_G3);    /* allow G2 -> G3 transition */
                    }
                    restore_flags(flags);
                    break;
                case (1):
                case (3):
                case (4):
                    save_flags(flags);
                    cli();
                    cs->hw.hfcsx.nt_timer = 0;
                    cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
                    Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
                    restore_flags(flags);
                    break;
                default:
                    break;
            }
        }
    }
    if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
        DChannel_proc_rcv(cs);
    if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
        DChannel_proc_xmt(cs);
}


/********************************/
/* called for card init message */
/********************************/
void __devinit
inithfcsx(struct IsdnCardState *cs)
{
    cs->setstack_d = setstack_hfcsx;
    cs->dbusytimer.function = (void *) hfcsx_dbusy_timer;
    cs->dbusytimer.data = (long) cs;
    init_timer(&cs->dbusytimer);
    cs->tqueue.routine = (void *) (void *) hfcsx_bh;
    cs->BC_Send_Data = &hfcsx_send_data;
    cs->bcs[0].BC_SetStack = setstack_2b;
    cs->bcs[1].BC_SetStack = setstack_2b;
    cs->bcs[0].BC_Close = close_hfcsx;
    cs->bcs[1].BC_Close = close_hfcsx;
    mode_hfcsx(cs->bcs, 0, 0);
    mode_hfcsx(cs->bcs + 1, 0, 1);
}



/*******************************************/
/* handle card messages from control layer */
/*******************************************/
static int
hfcsx_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
    long flags;

    if (cs->debug & L1_DEB_ISAC)
        debugl1(cs, "HFCSX: card_msg %x", mt);
    switch (mt) {
        case CARD_RESET:
            reset_hfcsx(cs);
            return (0);
        case CARD_RELEASE:
            release_io_hfcsx(cs);
            return (0);
        case CARD_INIT:
            inithfcsx(cs);
            save_flags(flags);
            sti();
            set_current_state(TASK_UNINTERRUPTIBLE);
            schedule_timeout((80 * HZ) / 1000);    /* Timeout 80ms */
            /* now switch timer interrupt off */
            cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
            Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
            /* reinit mode reg */
            Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
            restore_flags(flags);
            return (0);
        case CARD_TEST:
            return (0);
    }
    return (0);
}



int __devinit
setup_hfcsx(struct IsdnCard *card)
{
    struct IsdnCardState *cs = card->cs;
    char tmp[64];
    unsigned long flags;

    strcpy(tmp, hfcsx_revision);
    printk(KERN_INFO "HiSax: HFC-SX driver Rev. %s\n", HiSax_getrev(tmp));
    cs->hw.hfcsx.base = card->para[1] & 0xfffe;
    cs->irq = card->para[0];
    cs->hw.hfcsx.int_s1 = 0;
    cs->dc.hfcsx.ph_state = 0;
    cs->hw.hfcsx.fifo = 255;
    if ((cs->typ == ISDN_CTYPE_HFC_SX) || 
        (cs->typ == ISDN_CTYPE_HFC_SP_PCMCIA)) {
            if ((!cs->hw.hfcsx.base) || 
            check_region((cs->hw.hfcsx.base), 2)) {
          printk(KERN_WARNING
             "HiSax: HFC-SX io-base %#lx already in use\n",
                  cs->hw.hfcsx.base);
          return(0);
        } else {
          request_region(cs->hw.hfcsx.base, 2, "HFCSX isdn");
        }
        byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.base & 0xFF);
        byteout(cs->hw.hfcsx.base + 1,
            ((cs->hw.hfcsx.base >> 8) & 3) | 0x54);
        udelay(10);
            cs->hw.hfcsx.chip = Read_hfc(cs,HFCSX_CHIP_ID);
                switch (cs->hw.hfcsx.chip >> 4) {
          case 1: 
            tmp[0] ='+';
            break;
          case 9: 
            tmp[0] ='P';
            break;
          default:
            printk(KERN_WARNING
               "HFC-SX: invalid chip id 0x%x\n",
               cs->hw.hfcsx.chip >> 4);
            release_region(cs->hw.hfcsx.base, 2);
            return(0);
        }  
        if (!ccd_sp_irqtab[cs->irq & 0xF]) {
          printk(KERN_WARNING 
             "HFC_SX: invalid irq %d specified\n",cs->irq & 0xF);
          release_region(cs->hw.hfcsx.base, 2);
          return(0);
        }  
        save_flags(flags);
        cli();
        if (!(cs->hw.hfcsx.extra = (void *)
              kmalloc(sizeof(struct hfcsx_extra), GFP_ATOMIC))) {
          restore_flags(flags);
          release_region(cs->hw.hfcsx.base, 2);
          printk(KERN_WARNING "HFC-SX: unable to allocate memory\n");
          return(0);
        }
        restore_flags(flags);

        printk(KERN_INFO
               "HFC-S%c chip detected at base 0x%x IRQ %d HZ %d\n",
               tmp[0], (u_int) cs->hw.hfcsx.base,
               cs->irq, HZ);
        cs->hw.hfcsx.int_m2 = 0;    /* disable alle interrupts */
        cs->hw.hfcsx.int_m1 = 0;
        Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
        Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
    } else
        return (0);    /* no valid card type */

    cs->readisac = NULL;
    cs->writeisac = NULL;
    cs->readisacfifo = NULL;
    cs->writeisacfifo = NULL;
    cs->BC_Read_Reg = NULL;
    cs->BC_Write_Reg = NULL;
    cs->irq_func = &hfcsx_interrupt;

    cs->hw.hfcsx.timer.function = (void *) hfcsx_Timer;
    cs->hw.hfcsx.timer.data = (long) cs;
    cs->hw.hfcsx.b_fifo_size = 0; /* fifo size still unknown */
    cs->hw.hfcsx.cirm = ccd_sp_irqtab[cs->irq & 0xF]; /* RAM not evaluated */
    init_timer(&cs->hw.hfcsx.timer);

    reset_hfcsx(cs);
    cs->cardmsg = &hfcsx_card_msg;
    cs->auxcmd = &hfcsx_auxcmd;
    return (1);
}





:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0157 ]--