!C99Shell v. 1.0 pre-release build #13!

Software: Apache/2.0.54 (Unix) mod_perl/1.99_09 Perl/v5.8.0 mod_ssl/2.0.54 OpenSSL/0.9.7l DAV/2 FrontPage/5.0.2.2635 PHP/4.4.0 mod_gzip/2.0.26.1a 

uname -a: Linux snow.he.net 4.4.276-v2-mono-1 #1 SMP Wed Jul 21 11:21:17 PDT 2021 i686 

uid=99(nobody) gid=98(nobody) groups=98(nobody) 

Safe-mode: OFF (not secure)

/usr/src/linux-2.4.18-xfs-1.1/drivers/isdn/hisax/   drwxr-xr-x
Free 318.31 GB of 458.09 GB (69.49%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     hfc_pci.c (53.09 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: hfc_pci.c,v 1.1.4.1 2001/11/20 14:19:35 kai Exp $
 *
 * low level driver for CCD´s hfc-pci based cards
 *
 * Author       Werner Cornelius
 *              based on existing driver for CCD hfc ISA cards
 * Copyright    by Werner Cornelius  <werner@isdn4linux.de>
 *              by Karsten Keil      <keil@isdn4linux.de>
 * 
 * This software may be used and distributed according to the terms
 * of the GNU General Public License, incorporated herein by reference.
 *
 * For changes and modifications please read
 * ../../../Documentation/isdn/HiSax.cert
 *
 */

#include <linux/init.h>
#include <linux/config.h>
#define __NO_VERSION__
#include "hisax.h"
#include "hfc_pci.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/interrupt.h>

extern const char *CardType[];

static const char *hfcpci_revision = "$Revision: 1.1.4.1 $";

/* table entry in the PCI devices list */
typedef struct {
    int vendor_id;
    int device_id;
    char *vendor_name;
    char *card_name;
} PCI_ENTRY;

#define NT_T1_COUNT    20    /* number of 3.125ms interrupts for G2 timeout */
#define CLKDEL_TE    0x0e    /* CLKDEL in TE mode */
#define CLKDEL_NT    0x6c    /* CLKDEL in NT mode */

static const PCI_ENTRY id_list[] =
{
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
    {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
    {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
    {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
    {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
    {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
    {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
    {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
    {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
    {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
    {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
    {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
    {0, 0, NULL, NULL},
};


#if CONFIG_PCI

/******************************************/
/* free hardware resources used by driver */
/******************************************/
void
release_io_hfcpci(struct IsdnCardState *cs)
{
    unsigned long flags;

    save_flags(flags);
    cli();
    cs->hw.hfcpci.int_m2 = 0;    /* interrupt output off ! */
    Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
    restore_flags(flags);
    Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET);    /* Reset On */
    sti();
    set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_timeout((30 * HZ) / 1000);    /* Timeout 30ms */
    Write_hfc(cs, HFCPCI_CIRM, 0);    /* Reset Off */
#if CONFIG_PCI
    pcibios_write_config_word(cs->hw.hfcpci.pci_bus, cs->hw.hfcpci.pci_device_fn, PCI_COMMAND, 0);    /* disable memory mapped ports + busmaster */
#endif                /* CONFIG_PCI */
    del_timer(&cs->hw.hfcpci.timer);
    kfree(cs->hw.hfcpci.share_start);
    cs->hw.hfcpci.share_start = NULL;
    vfree(cs->hw.hfcpci.pci_io);
}

/********************************************************************************/
/* function called to reset the HFC PCI chip. A complete software reset of chip */
/* and fifos is done.                                                           */
/********************************************************************************/
static void
reset_hfcpci(struct IsdnCardState *cs)
{
    long flags;

    save_flags(flags);
    cli();
    pcibios_write_config_word(cs->hw.hfcpci.pci_bus, cs->hw.hfcpci.pci_device_fn, PCI_COMMAND, PCI_ENA_MEMIO);    /* enable memory mapped ports, disable busmaster */
    cs->hw.hfcpci.int_m2 = 0;    /* interrupt output off ! */
    Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);

    printk(KERN_INFO "HFC_PCI: resetting card\n");
    pcibios_write_config_word(cs->hw.hfcpci.pci_bus, cs->hw.hfcpci.pci_device_fn, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER);    /* enable memory ports + busmaster */
    Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET);    /* Reset On */
    sti();
    set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_timeout((30 * HZ) / 1000);    /* Timeout 30ms */
    Write_hfc(cs, HFCPCI_CIRM, 0);    /* Reset Off */
    set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_timeout((20 * HZ) / 1000);    /* Timeout 20ms */
    if (Read_hfc(cs, HFCPCI_STATUS) & 2)
        printk(KERN_WARNING "HFC-PCI init bit busy\n");

    cs->hw.hfcpci.fifo_en = 0x30;    /* only D fifos enabled */
    Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);

    cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK;    /* no echo connect , threshold */
    Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);

    Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
    cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE;
    Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);    /* S/T Auto awake */
    cs->hw.hfcpci.bswapped = 0;    /* no exchange */
    cs->hw.hfcpci.nt_mode = 0;    /* we are in TE mode */
    cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
    Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);

    cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
        HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
    Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);

    /* Clear already pending ints */
    if (Read_hfc(cs, HFCPCI_INT_S1));

    Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2);    /* HFC ST 2 */
    udelay(10);
    Write_hfc(cs, HFCPCI_STATES, 2);    /* HFC ST 2 */
    cs->hw.hfcpci.mst_m = HFCPCI_MASTER;    /* HFC Master Mode */

    Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
    cs->hw.hfcpci.sctrl = 0x40;    /* set tx_lo mode, error in datasheet ! */
    Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
    cs->hw.hfcpci.sctrl_r = 0;
    Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);

    /* Init GCI/IOM2 in master mode */
    /* Slots 0 and 1 are set for B-chan 1 and 2 */
    /* D- and monitor/CI channel are not enabled */
    /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
    /* STIO2 is used as data input, B1+B2 from IOM->ST */
    /* ST B-channel send disabled -> continous 1s */
    /* The IOM slots are always enabled */
    cs->hw.hfcpci.conn = 0x36;    /* set data flow directions */
    Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
    Write_hfc(cs, HFCPCI_B1_SSL, 0x80);    /* B1-Slot 0 STIO1 out enabled */
    Write_hfc(cs, HFCPCI_B2_SSL, 0x81);    /* B2-Slot 1 STIO1 out enabled */
    Write_hfc(cs, HFCPCI_B1_RSL, 0x80);    /* B1-Slot 0 STIO2 in enabled */
    Write_hfc(cs, HFCPCI_B2_RSL, 0x81);    /* B2-Slot 1 STIO2 in enabled */

    /* Finally enable IRQ output */
    cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE;
    Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
    if (Read_hfc(cs, HFCPCI_INT_S2));
    restore_flags(flags);
}

/***************************************************/
/* Timer function called when kernel timer expires */
/***************************************************/
static void
hfcpci_Timer(struct IsdnCardState *cs)
{
    cs->hw.hfcpci.timer.expires = jiffies + 75;
    /* WD RESET */
/*      WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80);
   add_timer(&cs->hw.hfcpci.timer);
 */
}


/*********************************/
/* schedule a new D-channel task */
/*********************************/
static void
sched_event_D_pci(struct IsdnCardState *cs, int event)
{
    test_and_set_bit(event, &cs->event);
    queue_task(&cs->tqueue, &tq_immediate);
    mark_bh(IMMEDIATE_BH);
}

/*********************************/
/* schedule a new b_channel task */
/*********************************/
static void
hfcpci_sched_event(struct BCState *bcs, int event)
{
    bcs->event |= 1 << event;
    queue_task(&bcs->tqueue, &tq_immediate);
    mark_bh(IMMEDIATE_BH);
}

/************************************************/
/* select a b-channel entry matching and active */
/************************************************/
static
struct BCState *
Sel_BCS(struct IsdnCardState *cs, int channel)
{
    if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
        return (&cs->bcs[0]);
    else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
        return (&cs->bcs[1]);
    else
        return (NULL);
}

/***************************************/
/* clear the desired B-channel rx fifo */
/***************************************/
static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo)
{       u_char fifo_state;
        bzfifo_type *bzr;

    if (fifo) {
            bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
        fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX;
    } else {
            bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
        fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX;
    }
    if (fifo_state)
            cs->hw.hfcpci.fifo_en ^= fifo_state;
    Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
    cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0;
    bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
    bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1;
    bzr->f1 = MAX_B_FRAMES;
    bzr->f2 = bzr->f1;    /* init F pointers to remain constant */
    if (fifo_state)
            cs->hw.hfcpci.fifo_en |= fifo_state;
    Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
}   

/***************************************/
/* clear the desired B-channel tx fifo */
/***************************************/
static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo)
{       u_char fifo_state;
        bzfifo_type *bzt;

    if (fifo) {
            bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
        fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX;
    } else {
            bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
        fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX;
    }
    if (fifo_state)
            cs->hw.hfcpci.fifo_en ^= fifo_state;
    Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
    bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
    bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1;
    bzt->f1 = MAX_B_FRAMES;
    bzt->f2 = bzt->f1;    /* init F pointers to remain constant */
    if (fifo_state)
            cs->hw.hfcpci.fifo_en |= fifo_state;
    Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
}   

/*********************************************/
/* read a complete B-frame out of the buffer */
/*********************************************/
static struct sk_buff
*
hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count)
{
    u_char *ptr, *ptr1, new_f2;
    struct sk_buff *skb;
    struct IsdnCardState *cs = bcs->cs;
    unsigned long flags;
    int total, maxlen, new_z2;
    z_type *zp;

    save_flags(flags);
    sti();
    if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
        debugl1(cs, "hfcpci_empty_fifo");
    zp = &bz->za[bz->f2];    /* point to Z-Regs */
    new_z2 = zp->z2 + count;    /* new position in fifo */
    if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
        new_z2 -= B_FIFO_SIZE;    /* buffer wrap */
    new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
    if ((count > HSCX_BUFMAX + 3) || (count < 4) ||
        (*(bdata + (zp->z1 - B_SUB_VAL)))) {
        if (cs->debug & L1_DEB_WARN)
            debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count);
#ifdef ERROR_STATISTIC
        bcs->err_inv++;
#endif
        bz->za[new_f2].z2 = new_z2;
        bz->f2 = new_f2;    /* next buffer */
        skb = NULL;
    } else if (!(skb = dev_alloc_skb(count - 3)))
        printk(KERN_WARNING "HFCPCI: receive out of memory\n");
    else {
        total = count;
        count -= 3;
        ptr = skb_put(skb, count);

        if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL)
            maxlen = count;        /* complete transfer */
        else
            maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2;    /* maximum */

        ptr1 = bdata + (zp->z2 - B_SUB_VAL);    /* start of data */
        memcpy(ptr, ptr1, maxlen);    /* copy data */
        count -= maxlen;

        if (count) {    /* rest remaining */
            ptr += maxlen;
            ptr1 = bdata;    /* start of buffer */
            memcpy(ptr, ptr1, count);    /* rest */
        }
        bz->za[new_f2].z2 = new_z2;
        bz->f2 = new_f2;    /* next buffer */

    }
    restore_flags(flags);
    return (skb);
}

/*******************************/
/* D-channel receive procedure */
/*******************************/
static
int
receive_dmsg(struct IsdnCardState *cs)
{
    struct sk_buff *skb;
    int maxlen;
    int rcnt, total;
    int count = 5;
    u_char *ptr, *ptr1;
    dfifo_type *df;
    z_type *zp;

    df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx;
    if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
        debugl1(cs, "rec_dmsg blocked");
        return (1);
    }
    while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
        zp = &df->za[df->f2 & D_FREG_MASK];
        rcnt = zp->z1 - zp->z2;
        if (rcnt < 0)
            rcnt += D_FIFO_SIZE;
        rcnt++;
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
                df->f1, df->f2, zp->z1, zp->z2, rcnt);

        if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
            (df->data[zp->z1])) {
            if (cs->debug & L1_DEB_WARN)
                debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]);
#ifdef ERROR_STATISTIC
            cs->err_rx++;
#endif
            df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1);    /* next buffer */
            df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1);
        } else if ((skb = dev_alloc_skb(rcnt - 3))) {
            total = rcnt;
            rcnt -= 3;
            ptr = skb_put(skb, rcnt);

            if (zp->z2 + rcnt <= D_FIFO_SIZE)
                maxlen = rcnt;    /* complete transfer */
            else
                maxlen = D_FIFO_SIZE - zp->z2;    /* maximum */

            ptr1 = df->data + zp->z2;    /* start of data */
            memcpy(ptr, ptr1, maxlen);    /* copy data */
            rcnt -= maxlen;

            if (rcnt) {    /* rest remaining */
                ptr += maxlen;
                ptr1 = df->data;    /* start of buffer */
                memcpy(ptr, ptr1, rcnt);    /* rest */
            }
            df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1);    /* next buffer */
            df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1);

            skb_queue_tail(&cs->rq, skb);
            sched_event_D_pci(cs, D_RCVBUFREADY);
        } else
            printk(KERN_WARNING "HFC-PCI: D receive out of memory\n");
    }
    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    return (1);
}

/*******************************************************************************/
/* check for transparent receive data and read max one threshold size if avail */
/*******************************************************************************/
int
hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata)
{
    unsigned short *z1r, *z2r;
    int new_z2, fcnt, maxlen;
    struct sk_buff *skb;
    u_char *ptr, *ptr1;

    z1r = &bz->za[MAX_B_FRAMES].z1;        /* pointer to z reg */
    z2r = z1r + 1;

    if (!(fcnt = *z1r - *z2r))
        return (0);    /* no data avail */

    if (fcnt <= 0)
        fcnt += B_FIFO_SIZE;    /* bytes actually buffered */
    if (fcnt > HFCPCI_BTRANS_THRESHOLD)
        fcnt = HFCPCI_BTRANS_THRESHOLD;        /* limit size */

    new_z2 = *z2r + fcnt;    /* new position in fifo */
    if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
        new_z2 -= B_FIFO_SIZE;    /* buffer wrap */

    if (!(skb = dev_alloc_skb(fcnt)))
        printk(KERN_WARNING "HFCPCI: receive out of memory\n");
    else {
        ptr = skb_put(skb, fcnt);
        if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
            maxlen = fcnt;    /* complete transfer */
        else
            maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r;    /* maximum */

        ptr1 = bdata + (*z2r - B_SUB_VAL);    /* start of data */
        memcpy(ptr, ptr1, maxlen);    /* copy data */
        fcnt -= maxlen;

        if (fcnt) {    /* rest remaining */
            ptr += maxlen;
            ptr1 = bdata;    /* start of buffer */
            memcpy(ptr, ptr1, fcnt);    /* rest */
        }
        cli();
        skb_queue_tail(&bcs->rqueue, skb);
        sti();
        hfcpci_sched_event(bcs, B_RCVBUFREADY);
    }

    *z2r = new_z2;        /* new position */
    return (1);
}                /* hfcpci_empty_fifo_trans */

/**********************************/
/* B-channel main receive routine */
/**********************************/
void
main_rec_hfcpci(struct BCState *bcs)
{
    long flags;
    struct IsdnCardState *cs = bcs->cs;
    int rcnt, real_fifo;
    int receive, count = 5;
    struct sk_buff *skb;
    bzfifo_type *bz;
    u_char *bdata;
    z_type *zp;


    save_flags(flags);
    if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
        bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
        bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
        real_fifo = 1;
    } else {
        bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
        bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1;
        real_fifo = 0;
    }
      Begin:
    count--;
    cli();
    if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
        debugl1(cs, "rec_data %d blocked", bcs->channel);
        restore_flags(flags);
        return;
    }
    sti();
    if (bz->f1 != bz->f2) {
        if (cs->debug & L1_DEB_HSCX)
            debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)",
                bcs->channel, bz->f1, bz->f2);
        zp = &bz->za[bz->f2];

        rcnt = zp->z1 - zp->z2;
        if (rcnt < 0)
            rcnt += B_FIFO_SIZE;
        rcnt++;
        if (cs->debug & L1_DEB_HSCX)
            debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)",
                bcs->channel, zp->z1, zp->z2, rcnt);
        if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) {
            cli();
            skb_queue_tail(&bcs->rqueue, skb);
            sti();
            hfcpci_sched_event(bcs, B_RCVBUFREADY);
        }
        rcnt = bz->f1 - bz->f2;
        if (rcnt < 0)
            rcnt += MAX_B_FRAMES + 1;
        if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) {
                rcnt = 0;
            hfcpci_clear_fifo_rx(cs, real_fifo);
        }
        cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt;
        if (rcnt > 1)
            receive = 1;
        else
            receive = 0;
    } else if (bcs->mode == L1_MODE_TRANS)
        receive = hfcpci_empty_fifo_trans(bcs, bz, bdata);
    else
        receive = 0;
    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    if (count && receive)
        goto Begin;
    restore_flags(flags);
    return;
}

/**************************/
/* D-channel send routine */
/**************************/
static void
hfcpci_fill_dfifo(struct IsdnCardState *cs)
{
    long flags;
    int fcnt;
    int count, new_z1, maxlen;
    dfifo_type *df;
    u_char *src, *dst, new_f1;

    if (!cs->tx_skb)
        return;
    if (cs->tx_skb->len <= 0)
        return;

    df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx;

    if (cs->debug & L1_DEB_ISAC)
        debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)",
            df->f1, df->f2,
            df->za[df->f1 & D_FREG_MASK].z1);
    fcnt = df->f1 - df->f2;    /* frame count actually buffered */
    if (fcnt < 0)
        fcnt += (MAX_D_FRAMES + 1);    /* if wrap around */
    if (fcnt > (MAX_D_FRAMES - 1)) {
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames");
#ifdef ERROR_STATISTIC
        cs->err_tx++;
#endif
        return;
    }
    /* now determine free bytes in FIFO buffer */
    count = df->za[df->f1 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1;
    if (count <= 0)
        count += D_FIFO_SIZE;    /* count now contains available bytes */

    if (cs->debug & L1_DEB_ISAC)
        debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)",
            cs->tx_skb->len, count);
    if (count < cs->tx_skb->len) {
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "hfcpci_fill_Dfifo no fifo mem");
        return;
    }
    count = cs->tx_skb->len;    /* get frame len */
    new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1);
    new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
    src = cs->tx_skb->data;    /* source pointer */
    dst = df->data + df->za[df->f1 & D_FREG_MASK].z1;
    maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1;        /* end fifo */
    if (maxlen > count)
        maxlen = count;    /* limit size */
    memcpy(dst, src, maxlen);    /* first copy */

    count -= maxlen;    /* remaining bytes */
    if (count) {
        dst = df->data;    /* start of buffer */
        src += maxlen;    /* new position */
        memcpy(dst, src, count);
    }
    save_flags(flags);
    cli();
    df->za[new_f1 & D_FREG_MASK].z1 = new_z1;    /* for next buffer */
    df->za[df->f1 & D_FREG_MASK].z1 = new_z1;    /* new pos actual buffer */
    df->f1 = new_f1;    /* next frame */
    restore_flags(flags);

    dev_kfree_skb_any(cs->tx_skb);
    cs->tx_skb = NULL;
    return;
}

/**************************/
/* B-channel send routine */
/**************************/
static void
hfcpci_fill_fifo(struct BCState *bcs)
{
    struct IsdnCardState *cs = bcs->cs;
    unsigned long flags;
    int maxlen, fcnt;
    int count, new_z1;
    bzfifo_type *bz;
    u_char *bdata;
    u_char new_f1, *src, *dst;
    unsigned short *z1t, *z2t;

    if (!bcs->tx_skb)
        return;
    if (bcs->tx_skb->len <= 0)
        return;

    save_flags(flags);
    sti();

    if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
        bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
        bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2;
    } else {
        bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
        bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1;
    }

    if (bcs->mode == L1_MODE_TRANS) {
        z1t = &bz->za[MAX_B_FRAMES].z1;
        z2t = z1t + 1;
        if (cs->debug & L1_DEB_HSCX)
            debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)",
                bcs->channel, *z1t, *z2t);
        fcnt = *z2t - *z1t;
        if (fcnt <= 0)
            fcnt += B_FIFO_SIZE;    /* fcnt contains available bytes in fifo */
        fcnt = B_FIFO_SIZE - fcnt;    /* remaining bytes to send */

        while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) {
            if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) {
                /* data is suitable for fifo */
                count = bcs->tx_skb->len;

                new_z1 = *z1t + count;    /* new buffer Position */
                if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
                    new_z1 -= B_FIFO_SIZE;    /* buffer wrap */
                src = bcs->tx_skb->data;    /* source pointer */
                dst = bdata + (*z1t - B_SUB_VAL);
                maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t;    /* end of fifo */
                if (maxlen > count)
                    maxlen = count;        /* limit size */
                memcpy(dst, src, maxlen);    /* first copy */

                count -= maxlen;    /* remaining bytes */
                if (count) {
                    dst = bdata;    /* start of buffer */
                    src += maxlen;    /* new position */
                    memcpy(dst, src, count);
                }
                bcs->tx_cnt -= bcs->tx_skb->len;
                fcnt += bcs->tx_skb->len;
                *z1t = new_z1;    /* now send data */
            } else if (cs->debug & L1_DEB_HSCX)
                debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded",
                    bcs->channel, bcs->tx_skb->len);

            dev_kfree_skb_any(bcs->tx_skb);
            cli();
            bcs->tx_skb = skb_dequeue(&bcs->squeue);    /* fetch next data */
            sti();
        }
        test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
        restore_flags(flags);
        return;
    }
    if (cs->debug & L1_DEB_HSCX)
        debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)",
            bcs->channel, bz->f1, bz->f2,
            bz->za[bz->f1].z1);

    fcnt = bz->f1 - bz->f2;    /* frame count actually buffered */
    if (fcnt < 0)
        fcnt += (MAX_B_FRAMES + 1);    /* if wrap around */
    if (fcnt > (MAX_B_FRAMES - 1)) {
        if (cs->debug & L1_DEB_HSCX)
            debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames");
        restore_flags(flags);
        return;
    }
    /* now determine free bytes in FIFO buffer */
    count = bz->za[bz->f1].z2 - bz->za[bz->f1].z1;
    if (count <= 0)
        count += B_FIFO_SIZE;    /* count now contains available bytes */

    if (cs->debug & L1_DEB_HSCX)
        debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx",
            bcs->channel, bcs->tx_skb->len,
            count, current->state);

    if (count < bcs->tx_skb->len) {
        if (cs->debug & L1_DEB_HSCX)
            debugl1(cs, "hfcpci_fill_fifo no fifo mem");
        restore_flags(flags);
        return;
    }
    count = bcs->tx_skb->len;    /* get frame len */
    new_z1 = bz->za[bz->f1].z1 + count;    /* new buffer Position */
    if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
        new_z1 -= B_FIFO_SIZE;    /* buffer wrap */

    new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
    src = bcs->tx_skb->data;    /* source pointer */
    dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL);
    maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1;        /* end fifo */
    if (maxlen > count)
        maxlen = count;    /* limit size */
    memcpy(dst, src, maxlen);    /* first copy */

    count -= maxlen;    /* remaining bytes */
    if (count) {
        dst = bdata;    /* start of buffer */
        src += maxlen;    /* new position */
        memcpy(dst, src, count);
    }
    bcs->tx_cnt -= bcs->tx_skb->len;
    if (bcs->st->lli.l1writewakeup &&
        (PACKET_NOACK != bcs->tx_skb->pkt_type))
        bcs->st->lli.l1writewakeup(bcs->st, bcs->tx_skb->len);

    cli();
    bz->za[new_f1].z1 = new_z1;    /* for next buffer */
    bz->f1 = new_f1;    /* next frame */
    restore_flags(flags);

    dev_kfree_skb_any(bcs->tx_skb);
    bcs->tx_skb = NULL;
    test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
    return;
}

/**********************************************/
/* D-channel l1 state call for leased NT-mode */
/**********************************************/
static void
dch_nt_l2l1(struct PStack *st, int pr, void *arg)
{
    struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;

    switch (pr) {
        case (PH_DATA | REQUEST):
        case (PH_PULL | REQUEST):
        case (PH_PULL | INDICATION):
            st->l1.l1hw(st, pr, arg);
            break;
        case (PH_ACTIVATE | REQUEST):
            st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
            break;
        case (PH_TESTLOOP | REQUEST):
            if (1 & (long) arg)
                debugl1(cs, "PH_TEST_LOOP B1");
            if (2 & (long) arg)
                debugl1(cs, "PH_TEST_LOOP B2");
            if (!(3 & (long) arg))
                debugl1(cs, "PH_TEST_LOOP DISABLED");
            st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
            break;
        default:
            if (cs->debug)
                debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
            break;
    }
}



/***********************/
/* set/reset echo mode */
/***********************/
static int
hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
{
    unsigned long flags;
    int i = *(unsigned int *) ic->parm.num;

    if ((ic->arg == 98) &&
        (!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) {
        save_flags(flags);
        cli();
        Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
        Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0);    /* HFC ST G0 */
        udelay(10);
        cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT;
        Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);    /* set NT-mode */
        udelay(10);
        Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1);    /* HFC ST G1 */
        udelay(10);
        Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
        cs->dc.hfcpci.ph_state = 1;
        cs->hw.hfcpci.nt_mode = 1;
        cs->hw.hfcpci.nt_timer = 0;
        cs->stlist->l2.l2l1 = dch_nt_l2l1;
        restore_flags(flags);
        debugl1(cs, "NT mode activated");
        return (0);
    }
    if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) ||
        (cs->hw.hfcpci.nt_mode) || (ic->arg != 12))
        return (-EINVAL);

    save_flags(flags);
    cli();
    if (i) {
        cs->logecho = 1;
        cs->hw.hfcpci.trm |= 0x20;    /* enable echo chan */
        cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC;
        cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX;
    } else {
        cs->logecho = 0;
        cs->hw.hfcpci.trm &= ~0x20;    /* disable echo chan */
        cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC;
        cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX;
    }
    cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
    cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
    cs->hw.hfcpci.conn |= 0x10;    /* B2-IOM -> B2-ST */
    cs->hw.hfcpci.ctmt &= ~2;
    Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
    Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
    Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
    Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
    Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
    Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
    Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
    restore_flags(flags);
    return (0);
}                /* hfcpci_auxcmd */

/*****************************/
/* E-channel receive routine */
/*****************************/
static void
receive_emsg(struct IsdnCardState *cs)
{
    long flags;
    int rcnt;
    int receive, count = 5;
    bzfifo_type *bz;
    u_char *bdata;
    z_type *zp;
    u_char *ptr, *ptr1, new_f2;
    int total, maxlen, new_z2;
    u_char e_buffer[256];

    save_flags(flags);
    bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
    bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
      Begin:
    count--;
    cli();
    if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
        debugl1(cs, "echo_rec_data blocked");
        restore_flags(flags);
        return;
    }
    sti();
    if (bz->f1 != bz->f2) {
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)",
                bz->f1, bz->f2);
        zp = &bz->za[bz->f2];

        rcnt = zp->z1 - zp->z2;
        if (rcnt < 0)
            rcnt += B_FIFO_SIZE;
        rcnt++;
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)",
                zp->z1, zp->z2, rcnt);
        new_z2 = zp->z2 + rcnt;        /* new position in fifo */
        if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
            new_z2 -= B_FIFO_SIZE;    /* buffer wrap */
        new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
        if ((rcnt > 256 + 3) || (count < 4) ||
            (*(bdata + (zp->z1 - B_SUB_VAL)))) {
            if (cs->debug & L1_DEB_WARN)
                debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt);
            bz->za[new_f2].z2 = new_z2;
            bz->f2 = new_f2;    /* next buffer */
        } else {
            total = rcnt;
            rcnt -= 3;
            ptr = e_buffer;

            if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL)
                maxlen = rcnt;    /* complete transfer */
            else
                maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2;    /* maximum */

            ptr1 = bdata + (zp->z2 - B_SUB_VAL);    /* start of data */
            memcpy(ptr, ptr1, maxlen);    /* copy data */
            rcnt -= maxlen;

            if (rcnt) {    /* rest remaining */
                ptr += maxlen;
                ptr1 = bdata;    /* start of buffer */
                memcpy(ptr, ptr1, rcnt);    /* rest */
            }
            bz->za[new_f2].z2 = new_z2;
            bz->f2 = new_f2;    /* next buffer */
            if (cs->debug & DEB_DLOG_HEX) {
                ptr = cs->dlog;
                if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) {
                    *ptr++ = 'E';
                    *ptr++ = 'C';
                    *ptr++ = 'H';
                    *ptr++ = 'O';
                    *ptr++ = ':';
                    ptr += QuickHex(ptr, e_buffer, total - 3);
                    ptr--;
                    *ptr++ = '\n';
                    *ptr = 0;
                    HiSax_putstatus(cs, NULL, cs->dlog);
                } else
                    HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3);
            }
        }

        rcnt = bz->f1 - bz->f2;
        if (rcnt < 0)
            rcnt += MAX_B_FRAMES + 1;
        if (rcnt > 1)
            receive = 1;
        else
            receive = 0;
    } else
        receive = 0;
    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    if (count && receive)
        goto Begin;
    restore_flags(flags);
    return;
}                /* receive_emsg */

/*********************/
/* Interrupt handler */
/*********************/
static void
hfcpci_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
    struct IsdnCardState *cs = dev_id;
    u_char exval;
    struct BCState *bcs;
    int count = 15;
    long flags;
    u_char val, stat;

    if (!cs) {
        printk(KERN_WARNING "HFC-PCI: Spurious interrupt!\n");
        return;
    }
    if (!(cs->hw.hfcpci.int_m2 & 0x08))
        return;        /* not initialised */

    if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) {
        val = Read_hfc(cs, HFCPCI_INT_S1);
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val);
    } else
        return;

    if (cs->debug & L1_DEB_ISAC)
        debugl1(cs, "HFC-PCI irq %x %s", val,
            test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
            "locked" : "unlocked");
    val &= cs->hw.hfcpci.int_m1;
    if (val & 0x40) {    /* state machine irq */
        exval = Read_hfc(cs, HFCPCI_STATES) & 0xf;
        if (cs->debug & L1_DEB_ISAC)
            debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state,
                exval);
        cs->dc.hfcpci.ph_state = exval;
        sched_event_D_pci(cs, D_L1STATECHANGE);
        val &= ~0x40;
    }
    if (val & 0x80) {    /* timer irq */
        if (cs->hw.hfcpci.nt_mode) {
            if ((--cs->hw.hfcpci.nt_timer) < 0)
                sched_event_D_pci(cs, D_L1STATECHANGE);
        }
        val &= ~0x80;
        Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
    }
    while (val) {
        save_flags(flags);
        cli();
        if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
            cs->hw.hfcpci.int_s1 |= val;
            restore_flags(flags);
            return;
        }
        if (cs->hw.hfcpci.int_s1 & 0x18) {
            exval = val;
            val = cs->hw.hfcpci.int_s1;
            cs->hw.hfcpci.int_s1 = exval;
        }
        if (val & 0x08) {
            if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
                if (cs->debug)
                    debugl1(cs, "hfcpci spurious 0x08 IRQ");
            } else
                main_rec_hfcpci(bcs);
        }
        if (val & 0x10) {
            if (cs->logecho)
                receive_emsg(cs);
            else if (!(bcs = Sel_BCS(cs, 1))) {
                if (cs->debug)
                    debugl1(cs, "hfcpci spurious 0x10 IRQ");
            } else
                main_rec_hfcpci(bcs);
        }
        if (val & 0x01) {
            if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
                if (cs->debug)
                    debugl1(cs, "hfcpci spurious 0x01 IRQ");
            } else {
                if (bcs->tx_skb) {
                    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                        hfcpci_fill_fifo(bcs);
                        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                    } else
                        debugl1(cs, "fill_data %d blocked", bcs->channel);
                } else {
                    if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
                        if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                            hfcpci_fill_fifo(bcs);
                            test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                        } else
                            debugl1(cs, "fill_data %d blocked", bcs->channel);
                    } else {
                        hfcpci_sched_event(bcs, B_XMTBUFREADY);
                    }
                }
            }
        }
        if (val & 0x02) {
            if (!(bcs = Sel_BCS(cs, 1))) {
                if (cs->debug)
                    debugl1(cs, "hfcpci spurious 0x02 IRQ");
            } else {
                if (bcs->tx_skb) {
                    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                        hfcpci_fill_fifo(bcs);
                        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                    } else
                        debugl1(cs, "fill_data %d blocked", bcs->channel);
                } else {
                    if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
                        if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                            hfcpci_fill_fifo(bcs);
                            test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                        } else
                            debugl1(cs, "fill_data %d blocked", bcs->channel);
                    } else {
                        hfcpci_sched_event(bcs, B_XMTBUFREADY);
                    }
                }
            }
        }
        if (val & 0x20) {    /* receive dframe */
            receive_dmsg(cs);
        }
        if (val & 0x04) {    /* dframe transmitted */
            if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
                del_timer(&cs->dbusytimer);
            if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
                sched_event_D_pci(cs, D_CLEARBUSY);
            if (cs->tx_skb) {
                if (cs->tx_skb->len) {
                    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                        hfcpci_fill_dfifo(cs);
                        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                    } else {
                        debugl1(cs, "hfcpci_fill_dfifo irq blocked");
                    }
                    goto afterXPR;
                } else {
                    dev_kfree_skb_irq(cs->tx_skb);
                    cs->tx_cnt = 0;
                    cs->tx_skb = NULL;
                }
            }
            if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
                cs->tx_cnt = 0;
                if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                    hfcpci_fill_dfifo(cs);
                    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                } else {
                    debugl1(cs, "hfcpci_fill_dfifo irq blocked");
                }
            } else
                sched_event_D_pci(cs, D_XMTBUFREADY);
        }
          afterXPR:
        if (cs->hw.hfcpci.int_s1 && count--) {
            val = cs->hw.hfcpci.int_s1;
            cs->hw.hfcpci.int_s1 = 0;
            if (cs->debug & L1_DEB_ISAC)
                debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count);
        } else
            val = 0;
        restore_flags(flags);
    }
}

/********************************************************************/
/* timer callback for D-chan busy resolution. Currently no function */
/********************************************************************/
static void
hfcpci_dbusy_timer(struct IsdnCardState *cs)
{
}

/*************************************/
/* Layer 1 D-channel hardware access */
/*************************************/
static void
HFCPCI_l1hw(struct PStack *st, int pr, void *arg)
{
    struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
    struct sk_buff *skb = arg;
    unsigned long flags;

    switch (pr) {
        case (PH_DATA | REQUEST):
            if (cs->debug & DEB_DLOG_HEX)
                LogFrame(cs, skb->data, skb->len);
            if (cs->debug & DEB_DLOG_VERBOSE)
                dlogframe(cs, skb, 0);
            if (cs->tx_skb) {
                skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG        /* psa */
                if (cs->debug & L1_DEB_LAPD)
                    Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
            } else {
                cs->tx_skb = skb;
                cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG        /* psa */
                if (cs->debug & L1_DEB_LAPD)
                    Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
                if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                    hfcpci_fill_dfifo(cs);
                    test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
                } else
                    debugl1(cs, "hfcpci_fill_dfifo blocked");

            }
            break;
        case (PH_PULL | INDICATION):
            if (cs->tx_skb) {
                if (cs->debug & L1_DEB_WARN)
                    debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
                skb_queue_tail(&cs->sq, skb);
                break;
            }
            if (cs->debug & DEB_DLOG_HEX)
                LogFrame(cs, skb->data, skb->len);
            if (cs->debug & DEB_DLOG_VERBOSE)
                dlogframe(cs, skb, 0);
            cs->tx_skb = skb;
            cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG        /* psa */
            if (cs->debug & L1_DEB_LAPD)
                Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
            if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
                hfcpci_fill_dfifo(cs);
                test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
            } else
                debugl1(cs, "hfcpci_fill_dfifo blocked");
            break;
        case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG        /* psa */
            if (cs->debug & L1_DEB_LAPD)
                debugl1(cs, "-> PH_REQUEST_PULL");
#endif
            if (!cs->tx_skb) {
                test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
                st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
            } else
                test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
            break;
        case (HW_RESET | REQUEST):
            Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);    /* HFC ST 3 */
            udelay(6);
            Write_hfc(cs, HFCPCI_STATES, 3);    /* HFC ST 2 */
            cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
            Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
            Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
            l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
            break;
        case (HW_ENABLE | REQUEST):
            Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION);
            break;
        case (HW_DEACTIVATE | REQUEST):
            cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER;
            Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
            break;
        case (HW_INFO3 | REQUEST):
            cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
            Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
            break;
        case (HW_TESTLOOP | REQUEST):
            switch ((int) arg) {
                case (1):
                    Write_hfc(cs, HFCPCI_B1_SSL, 0x80);    /* tx slot */
                    Write_hfc(cs, HFCPCI_B1_RSL, 0x80);    /* rx slot */
                    save_flags(flags);
                    cli();
                    cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1;
                    Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
                    restore_flags(flags);
                    break;

                case (2):
                    Write_hfc(cs, HFCPCI_B2_SSL, 0x81);    /* tx slot */
                    Write_hfc(cs, HFCPCI_B2_RSL, 0x81);    /* rx slot */
                    save_flags(flags);
                    cli();
                    cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08;
                    Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
                    restore_flags(flags);
                    break;

                default:
                    if (cs->debug & L1_DEB_WARN)
                        debugl1(cs, "hfcpci_l1hw loop invalid %4x", (int) arg);
                    return;
            }
            save_flags(flags);
            cli();
            cs->hw.hfcpci.trm |= 0x80;    /* enable IOM-loop */
            Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
            restore_flags(flags);
            break;
        default:
            if (cs->debug & L1_DEB_WARN)
                debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr);
            break;
    }
}

/***********************************************/
/* called during init setting l1 stack pointer */
/***********************************************/
void
setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs)
{
    st->l1.l1hw = HFCPCI_l1hw;
}

/**************************************/
/* send B-channel data if not blocked */
/**************************************/
static void
hfcpci_send_data(struct BCState *bcs)
{
    struct IsdnCardState *cs = bcs->cs;

    if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
        hfcpci_fill_fifo(bcs);
        test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
    } else
        debugl1(cs, "send_data %d blocked", bcs->channel);
}

/***************************************************************/
/* activate/deactivate hardware for selected channels and mode */
/***************************************************************/
void
mode_hfcpci(struct BCState *bcs, int mode, int bc)
{
    struct IsdnCardState *cs = bcs->cs;
    unsigned long flags;
    int fifo2;

    if (cs->debug & L1_DEB_HSCX)
        debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d",
            mode, bc, bcs->channel);
    bcs->mode = mode;
    bcs->channel = bc;
    fifo2 = bc;
    save_flags(flags);
    cli();
    if (cs->chanlimit > 1) {
        cs->hw.hfcpci.bswapped = 0;    /* B1 and B2 normal mode */
        cs->hw.hfcpci.sctrl_e &= ~0x80;
    } else {
        if (bc) {
            if (mode != L1_MODE_NULL) {
                cs->hw.hfcpci.bswapped = 1;    /* B1 and B2 exchanged */
                cs->hw.hfcpci.sctrl_e |= 0x80;
            } else {
                cs->hw.hfcpci.bswapped = 0;    /* B1 and B2 normal mode */
                cs->hw.hfcpci.sctrl_e &= ~0x80;
            }
            fifo2 = 0;
        } else {
            cs->hw.hfcpci.bswapped = 0;    /* B1 and B2 normal mode */
            cs->hw.hfcpci.sctrl_e &= ~0x80;
        }
    }
    switch (mode) {
        case (L1_MODE_NULL):
            if (bc) {
                cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
                cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
            } else {
                cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA;
                cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA;
            }
            if (fifo2) {
                cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
                cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
            } else {
                cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
                cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
            }
            break;
        case (L1_MODE_TRANS):
                hfcpci_clear_fifo_rx(cs, fifo2);
                hfcpci_clear_fifo_tx(cs, fifo2);
            if (bc) {
                cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
                cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
            } else {
                cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
                cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
            }
            if (fifo2) {
                cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
                cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
                cs->hw.hfcpci.ctmt |= 2;
                cs->hw.hfcpci.conn &= ~0x18;
            } else {
                cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
                cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
                cs->hw.hfcpci.ctmt |= 1;
                cs->hw.hfcpci.conn &= ~0x03;
            }
            break;
        case (L1_MODE_HDLC):
                hfcpci_clear_fifo_rx(cs, fifo2);
                hfcpci_clear_fifo_tx(cs, fifo2);
            if (bc) {
                cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
                cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
            } else {
                cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
                cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
            }
            if (fifo2) {
                    cs->hw.hfcpci.last_bfifo_cnt[1] = 0;  
                cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
                cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
                cs->hw.hfcpci.ctmt &= ~2;
                cs->hw.hfcpci.conn &= ~0x18;
            } else {
                    cs->hw.hfcpci.last_bfifo_cnt[0] = 0;  
                cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
                cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
                cs->hw.hfcpci.ctmt &= ~1;
                cs->hw.hfcpci.conn &= ~0x03;
            }
            break;
        case (L1_MODE_EXTRN):
            if (bc) {
                cs->hw.hfcpci.conn |= 0x10;
                cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
                cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
                cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
                cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
            } else {
                cs->hw.hfcpci.conn |= 0x02;
                cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
                cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
                cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
                cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
            }
            break;
    }
    Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);
    Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
    Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
    Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
    Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
    Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
    Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
    restore_flags(flags);
}

/******************************/
/* Layer2 -> Layer 1 Transfer */
/******************************/
static void
hfcpci_l2l1(struct PStack *st, int pr, void *arg)
{
    struct sk_buff *skb = arg;
    long flags;

    switch (pr) {
        case (PH_DATA | REQUEST):
            save_flags(flags);
            cli();
            if (st->l1.bcs->tx_skb) {
                skb_queue_tail(&st->l1.bcs->squeue, skb);
                restore_flags(flags);
            } else {
                st->l1.bcs->tx_skb = skb;
/*                              test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
 */ st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
                restore_flags(flags);
            }
            break;
        case (PH_PULL | INDICATION):
            if (st->l1.bcs->tx_skb) {
                printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
                break;
            }
            save_flags(flags);
            cli();
/*                      test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
 */ st->l1.bcs->tx_skb = skb;
            st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
            restore_flags(flags);
            break;
        case (PH_PULL | REQUEST):
            if (!st->l1.bcs->tx_skb) {
                test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
                st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
            } else
                test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
            break;
        case (PH_ACTIVATE | REQUEST):
            test_and_set_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
            mode_hfcpci(st->l1.bcs, st->l1.mode, st->l1.bc);
            l1_msg_b(st, pr, arg);
            break;
        case (PH_DEACTIVATE | REQUEST):
            l1_msg_b(st, pr, arg);
            break;
        case (PH_DEACTIVATE | CONFIRM):
            test_and_clear_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
            test_and_clear_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
            mode_hfcpci(st->l1.bcs, 0, st->l1.bc);
            st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
            break;
    }
}

/******************************************/
/* deactivate B-channel access and queues */
/******************************************/
static void
close_hfcpci(struct BCState *bcs)
{
    mode_hfcpci(bcs, 0, bcs->channel);
    if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
        skb_queue_purge(&bcs->rqueue);
        skb_queue_purge(&bcs->squeue);
        if (bcs->tx_skb) {
            dev_kfree_skb_any(bcs->tx_skb);
            bcs->tx_skb = NULL;
            test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
        }
    }
}

/*************************************/
/* init B-channel queues and control */
/*************************************/
static int
open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs)
{
    if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
        skb_queue_head_init(&bcs->rqueue);
        skb_queue_head_init(&bcs->squeue);
    }
    bcs->tx_skb = NULL;
    test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
    bcs->event = 0;
    bcs->tx_cnt = 0;
    return (0);
}

/*********************************/
/* inits the stack for B-channel */
/*********************************/
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
    bcs->channel = st->l1.bc;
    if (open_hfcpcistate(st->l1.hardware, bcs))
        return (-1);
    st->l1.bcs = bcs;
    st->l2.l2l1 = hfcpci_l2l1;
    setstack_manager(st);
    bcs->st = st;
    setstack_l1_B(st);
    return (0);
}

/***************************/
/* handle L1 state changes */
/***************************/
static void
hfcpci_bh(struct IsdnCardState *cs)
{
    unsigned long flags;
/*      struct PStack *stptr;
 */
    if (!cs)
        return;
    if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
        if (!cs->hw.hfcpci.nt_mode)
            switch (cs->dc.hfcpci.ph_state) {
                case (0):
                    l1_msg(cs, HW_RESET | INDICATION, NULL);
                    break;
                case (3):
                    l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
                    break;
                case (8):
                    l1_msg(cs, HW_RSYNC | INDICATION, NULL);
                    break;
                case (6):
                    l1_msg(cs, HW_INFO2 | INDICATION, NULL);
                    break;
                case (7):
                    l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
                    break;
                default:
                    break;
        } else {
            switch (cs->dc.hfcpci.ph_state) {
                case (2):
                    save_flags(flags);
                    cli();
                    if (cs->hw.hfcpci.nt_timer < 0) {
                        cs->hw.hfcpci.nt_timer = 0;
                        cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
                        Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
                        /* Clear already pending ints */
                        if (Read_hfc(cs, HFCPCI_INT_S1));

                        Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
                        udelay(10);
                        Write_hfc(cs, HFCPCI_STATES, 4);
                        cs->dc.hfcpci.ph_state = 4;
                    } else {
                        cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER;
                        Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
                        cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER;
                        cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125;
                        Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
                        Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
                        cs->hw.hfcpci.nt_timer = NT_T1_COUNT;
                        Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);    /* allow G2 -> G3 transition */
                    }
                    restore_flags(flags);
                    break;
                case (1):
                case (3):
                case (4):
                    save_flags(flags);
                    cli();
                    cs->hw.hfcpci.nt_timer = 0;
                    cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
                    Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
                    restore_flags(flags);
                    break;
                default:
                    break;
            }
        }
    }
    if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
        DChannel_proc_rcv(cs);
    if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
        DChannel_proc_xmt(cs);
}


/********************************/
/* called for card init message */
/********************************/
void __init
inithfcpci(struct IsdnCardState *cs)
{
    cs->setstack_d = setstack_hfcpci;
    cs->dbusytimer.function = (void *) hfcpci_dbusy_timer;
    cs->dbusytimer.data = (long) cs;
    init_timer(&cs->dbusytimer);
    cs->tqueue.routine = (void *) (void *) hfcpci_bh;
    cs->BC_Send_Data = &hfcpci_send_data;
    cs->bcs[0].BC_SetStack = setstack_2b;
    cs->bcs[1].BC_SetStack = setstack_2b;
    cs->bcs[0].BC_Close = close_hfcpci;
    cs->bcs[1].BC_Close = close_hfcpci;
    mode_hfcpci(cs->bcs, 0, 0);
    mode_hfcpci(cs->bcs + 1, 0, 1);
}



/*******************************************/
/* handle card messages from control layer */
/*******************************************/
static int
hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
    long flags;

    if (cs->debug & L1_DEB_ISAC)
        debugl1(cs, "HFCPCI: card_msg %x", mt);
    switch (mt) {
        case CARD_RESET:
            reset_hfcpci(cs);
            return (0);
        case CARD_RELEASE:
            release_io_hfcpci(cs);
            return (0);
        case CARD_INIT:
            inithfcpci(cs);
            save_flags(flags);
            sti();
            set_current_state(TASK_UNINTERRUPTIBLE);
            schedule_timeout((80 * HZ) / 1000);    /* Timeout 80ms */
            /* now switch timer interrupt off */
            cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
            Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
            /* reinit mode reg */
            Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
            restore_flags(flags);
            return (0);
        case CARD_TEST:
            return (0);
    }
    return (0);
}


/* this variable is used as card index when more than one cards are present */
static struct pci_dev *dev_hfcpci __initdata = NULL;

#endif                /* CONFIG_PCI */

int __init
setup_hfcpci(struct IsdnCard *card)
{
    struct IsdnCardState *cs = card->cs;
    char tmp[64];
    int i;
    struct pci_dev *tmp_hfcpci = NULL;

#ifdef __BIG_ENDIAN
#error "not running on big endian machines now"
#endif
    strcpy(tmp, hfcpci_revision);
    printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp));
#if CONFIG_PCI
    cs->hw.hfcpci.int_s1 = 0;
    cs->dc.hfcpci.ph_state = 0;
    cs->hw.hfcpci.fifo = 255;
    if (cs->typ == ISDN_CTYPE_HFC_PCI) {
        i = 0;
        while (id_list[i].vendor_id) {
            tmp_hfcpci = pci_find_device(id_list[i].vendor_id,
                             id_list[i].device_id,
                             dev_hfcpci);
            i++;
            if (tmp_hfcpci) {
                if (pci_enable_device(tmp_hfcpci))
                    continue;
                pci_set_master(tmp_hfcpci);
                if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK)))
                    continue;
                else
                    break;
            }
        }

        if (tmp_hfcpci) {
            i--;
            dev_hfcpci = tmp_hfcpci;    /* old device */
            cs->hw.hfcpci.pci_bus = dev_hfcpci->bus->number;
            cs->hw.hfcpci.pci_device_fn = dev_hfcpci->devfn;
            cs->irq = dev_hfcpci->irq;
            if (!cs->irq) {
                printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
                return (0);
            }
            cs->hw.hfcpci.pci_io = (char *) dev_hfcpci->resource[ 1].start;
            printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name);
        } else {
            printk(KERN_WARNING "HFC-PCI: No PCI card found\n");
            return (0);
        }
        if (!cs->hw.hfcpci.pci_io) {
            printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
            return (0);
        }
        /* Allocate memory for FIFOS */
        /* Because the HFC-PCI needs a 32K physical alignment, we */
        /* need to allocate the double mem and align the address */
        if (!((void *) cs->hw.hfcpci.share_start = kmalloc(65536, GFP_KERNEL))) {
            printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n");
            return 0;
        }
        (ulong) cs->hw.hfcpci.fifos =
            (((ulong) cs->hw.hfcpci.share_start) & ~0x7FFF) + 0x8000;
        pcibios_write_config_dword(cs->hw.hfcpci.pci_bus,
                       cs->hw.hfcpci.pci_device_fn, 0x80,
                   (u_int) virt_to_bus(cs->hw.hfcpci.fifos));
        cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256);
        printk(KERN_INFO
               "HFC-PCI: defined at mem %#x fifo %#x(%#x) IRQ %d HZ %d\n",
               (u_int) cs->hw.hfcpci.pci_io,
               (u_int) cs->hw.hfcpci.fifos,
               (u_int) virt_to_bus(cs->hw.hfcpci.fifos),
               cs->irq, HZ);
        pcibios_write_config_word(cs->hw.hfcpci.pci_bus, cs->hw.hfcpci.pci_device_fn, PCI_COMMAND, PCI_ENA_MEMIO);    /* enable memory mapped ports, disable busmaster */
        cs->hw.hfcpci.int_m2 = 0;    /* disable alle interrupts */
        cs->hw.hfcpci.int_m1 = 0;
        Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
        Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
        /* At this point the needed PCI config is done */
        /* fifos are still not enabled */
    } else
        return (0);    /* no valid card type */


    cs->readisac = NULL;
    cs->writeisac = NULL;
    cs->readisacfifo = NULL;
    cs->writeisacfifo = NULL;
    cs->BC_Read_Reg = NULL;
    cs->BC_Write_Reg = NULL;
    cs->irq_func = &hfcpci_interrupt;
    cs->irq_flags |= SA_SHIRQ;

    cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer;
    cs->hw.hfcpci.timer.data = (long) cs;
    init_timer(&cs->hw.hfcpci.timer);

    reset_hfcpci(cs);
    cs->cardmsg = &hfcpci_card_msg;
    cs->auxcmd = &hfcpci_auxcmd;
    return (1);
#else
    printk(KERN_WARNING "HFC-PCI: NO_PCI_BIOS\n");
    return (0);
#endif                /* CONFIG_PCI */
}

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0317 ]--