!C99Shell v. 1.0 pre-release build #13!

Software: Apache/2.0.54 (Unix) mod_perl/1.99_09 Perl/v5.8.0 mod_ssl/2.0.54 OpenSSL/0.9.7l DAV/2 FrontPage/5.0.2.2635 PHP/4.4.0 mod_gzip/2.0.26.1a 

uname -a: Linux snow.he.net 4.4.276-v2-mono-1 #1 SMP Wed Jul 21 11:21:17 PDT 2021 i686 

uid=99(nobody) gid=98(nobody) groups=98(nobody) 

Safe-mode: OFF (not secure)

/usr/src/linux-2.4.18-xfs-1.1/drivers/isdn/hisax/   drwxr-xr-x
Free 318.31 GB of 458.09 GB (69.49%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     avm_pci.c (21.92 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: avm_pci.c,v 1.1.4.1 2001/11/20 14:19:35 kai Exp $
 *
 * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
 *
 * Author       Karsten Keil
 * Copyright    by Karsten Keil      <keil@isdn4linux.de>
 *
 * This software may be used and distributed according to the terms
 * of the GNU General Public License, incorporated herein by reference.
 *
 * Thanks to AVM, Berlin for information
 *
 */

#define __NO_VERSION__
#include <linux/config.h>
#include <linux/init.h>
#include "hisax.h"
#include "isac.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/interrupt.h>

extern const char *CardType[];
static const char *avm_pci_rev = "$Revision: 1.1.4.1 $";

#define  AVM_FRITZ_PCI        1
#define  AVM_FRITZ_PNP        2

#define  HDLC_FIFO        0x0
#define  HDLC_STATUS        0x4

#define     AVM_HDLC_1        0x00
#define     AVM_HDLC_2        0x01
#define     AVM_ISAC_FIFO        0x02
#define     AVM_ISAC_REG_LOW    0x04
#define     AVM_ISAC_REG_HIGH    0x06

#define  AVM_STATUS0_IRQ_ISAC    0x01
#define  AVM_STATUS0_IRQ_HDLC    0x02
#define  AVM_STATUS0_IRQ_TIMER    0x04
#define  AVM_STATUS0_IRQ_MASK    0x07

#define  AVM_STATUS0_RESET    0x01
#define  AVM_STATUS0_DIS_TIMER    0x02
#define  AVM_STATUS0_RES_TIMER    0x04
#define  AVM_STATUS0_ENA_IRQ    0x08
#define  AVM_STATUS0_TESTBIT    0x10

#define  AVM_STATUS1_INT_SEL    0x0f
#define  AVM_STATUS1_ENA_IOM    0x80

#define  HDLC_MODE_ITF_FLG    0x01
#define  HDLC_MODE_TRANS    0x02
#define  HDLC_MODE_CCR_7    0x04
#define  HDLC_MODE_CCR_16    0x08
#define  HDLC_MODE_TESTLOOP    0x80

#define  HDLC_INT_XPR        0x80
#define  HDLC_INT_XDU        0x40
#define  HDLC_INT_RPR        0x20
#define  HDLC_INT_MASK        0xE0

#define  HDLC_STAT_RME        0x01
#define  HDLC_STAT_RDO        0x10
#define  HDLC_STAT_CRCVFRRAB    0x0E
#define  HDLC_STAT_CRCVFR    0x06
#define  HDLC_STAT_RML_MASK    0x3f00

#define  HDLC_CMD_XRS        0x80
#define  HDLC_CMD_XME        0x01
#define  HDLC_CMD_RRS        0x20
#define  HDLC_CMD_XML_MASK    0x3f00


/* Interface functions */

static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
    register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
    register u_char val;
    register long flags;

    save_flags(flags);
    cli();
    outb(idx, cs->hw.avm.cfg_reg + 4);
    val = inb(cs->hw.avm.isac + (offset & 0xf));
    restore_flags(flags);
    return (val);
}

static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
    register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
    register long flags;

    save_flags(flags);
    cli();
    outb(idx, cs->hw.avm.cfg_reg + 4);
    outb(value, cs->hw.avm.isac + (offset & 0xf));
    restore_flags(flags);
}

static void
ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
    outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
    insb(cs->hw.avm.isac, data, size);
}

static void
WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
    outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
    outsb(cs->hw.avm.isac, data, size);
}

static inline u_int
ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
{
    register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
    register u_int val;
    register long flags;

    save_flags(flags);
    cli();
    outl(idx, cs->hw.avm.cfg_reg + 4);
    val = inl(cs->hw.avm.isac + offset);
    restore_flags(flags);
    return (val);
}

static inline void
WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
{
    register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
    register long flags;

    save_flags(flags);
    cli();
    outl(idx, cs->hw.avm.cfg_reg + 4);
    outl(value, cs->hw.avm.isac + offset);
    restore_flags(flags);
}

static inline u_char
ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
{
    register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
    register u_char val;
    register long flags;

    save_flags(flags);
    cli();
    outb(idx, cs->hw.avm.cfg_reg + 4);
    val = inb(cs->hw.avm.isac + offset);
    restore_flags(flags);
    return (val);
}

static inline void
WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
{
    register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
    register long flags;

    save_flags(flags);
    cli();
    outb(idx, cs->hw.avm.cfg_reg + 4);
    outb(value, cs->hw.avm.isac + offset);
    restore_flags(flags);
}

static u_char
ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
{
    return(0xff & ReadHDLCPCI(cs, chan, offset));
}

static void
WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
{
    WriteHDLCPCI(cs, chan, offset, value);
}

static inline
struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
{
    if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
        return(&cs->bcs[0]);
    else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
        return(&cs->bcs[1]);
    else
        return(NULL);
}

void inline
hdlc_sched_event(struct BCState *bcs, int event)
{
    bcs->event |= 1 << event;
    queue_task(&bcs->tqueue, &tq_immediate);
    mark_bh(IMMEDIATE_BH);
}

void
write_ctrl(struct BCState *bcs, int which) {

    if (bcs->cs->debug & L1_DEB_HSCX)
        debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
            'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
    if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
        WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
    } else {
        if (which & 4)
            WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
                bcs->hw.hdlc.ctrl.sr.mode);
        if (which & 2)
            WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
                bcs->hw.hdlc.ctrl.sr.xml);
        if (which & 1)
            WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
                bcs->hw.hdlc.ctrl.sr.cmd);
    }
}

void
modehdlc(struct BCState *bcs, int mode, int bc)
{
    struct IsdnCardState *cs = bcs->cs;
    int hdlc = bcs->channel;

    if (cs->debug & L1_DEB_HSCX)
        debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
            'A' + hdlc, bcs->mode, mode, hdlc, bc);
    bcs->hw.hdlc.ctrl.ctrl = 0;
    switch (mode) {
        case (-1): /* used for init */
            bcs->mode = 1;
            bcs->channel = bc;
            bc = 0;
        case (L1_MODE_NULL):
            if (bcs->mode == L1_MODE_NULL)
                return;
            bcs->hw.hdlc.ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
            bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
            write_ctrl(bcs, 5);
            bcs->mode = L1_MODE_NULL;
            bcs->channel = bc;
            break;
        case (L1_MODE_TRANS):
            bcs->mode = mode;
            bcs->channel = bc;
            bcs->hw.hdlc.ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
            bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
            write_ctrl(bcs, 5);
            bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
            write_ctrl(bcs, 1);
            bcs->hw.hdlc.ctrl.sr.cmd = 0;
            hdlc_sched_event(bcs, B_XMTBUFREADY);
            break;
        case (L1_MODE_HDLC):
            bcs->mode = mode;
            bcs->channel = bc;
            bcs->hw.hdlc.ctrl.sr.cmd  = HDLC_CMD_XRS | HDLC_CMD_RRS;
            bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
            write_ctrl(bcs, 5);
            bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
            write_ctrl(bcs, 1);
            bcs->hw.hdlc.ctrl.sr.cmd = 0;
            hdlc_sched_event(bcs, B_XMTBUFREADY);
            break;
    }
}

static inline void
hdlc_empty_fifo(struct BCState *bcs, int count)
{
    register u_int *ptr;
    u_char *p;
    u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
    int cnt=0;
    struct IsdnCardState *cs = bcs->cs;

    if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
        debugl1(cs, "hdlc_empty_fifo %d", count);
    if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
        if (cs->debug & L1_DEB_WARN)
            debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
        return;
    }
    ptr = (u_int *) p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
    bcs->hw.hdlc.rcvidx += count;
    if (cs->subtyp == AVM_FRITZ_PCI) {
        outl(idx, cs->hw.avm.cfg_reg + 4);
        while (cnt < count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
            *ptr++ = in_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
#else
            *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
#endif /* CONFIG_APUS */
#else
            *ptr++ = inl(cs->hw.avm.isac);
#endif /* __powerpc__ */
            cnt += 4;
        }
    } else {
        outb(idx, cs->hw.avm.cfg_reg + 4);
        while (cnt < count) {
            *p++ = inb(cs->hw.avm.isac);
            cnt++;
        }
    }
    if (cs->debug & L1_DEB_HSCX_FIFO) {
        char *t = bcs->blog;

        if (cs->subtyp == AVM_FRITZ_PNP)
            p = (u_char *) ptr;
        t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
                 bcs->channel ? 'B' : 'A', count);
        QuickHex(t, p, count);
        debugl1(cs, bcs->blog);
    }
}

static inline void
hdlc_fill_fifo(struct BCState *bcs)
{
    struct IsdnCardState *cs = bcs->cs;
    int count, cnt =0;
    int fifo_size = 32;
    u_char *p;
    u_int *ptr;

    if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
        debugl1(cs, "hdlc_fill_fifo");
    if (!bcs->tx_skb)
        return;
    if (bcs->tx_skb->len <= 0)
        return;

    bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
    if (bcs->tx_skb->len > fifo_size) {
        count = fifo_size;
    } else {
        count = bcs->tx_skb->len;
        if (bcs->mode != L1_MODE_TRANS)
            bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
    }
    if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
        debugl1(cs, "hdlc_fill_fifo %d/%ld", count, bcs->tx_skb->len);
    ptr = (u_int *) p = bcs->tx_skb->data;
    skb_pull(bcs->tx_skb, count);
    bcs->tx_cnt -= count;
    bcs->hw.hdlc.count += count;
    bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
    write_ctrl(bcs, 3);  /* sets the correct index too */
    if (cs->subtyp == AVM_FRITZ_PCI) {
        while (cnt<count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
            out_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
#else
            out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
#endif /* CONFIG_APUS */
#else
            outl(*ptr++, cs->hw.avm.isac);
#endif /* __powerpc__ */
            cnt += 4;
        }
    } else {
        while (cnt<count) {
            outb(*p++, cs->hw.avm.isac);
            cnt++;
        }
    }
    if (cs->debug & L1_DEB_HSCX_FIFO) {
        char *t = bcs->blog;

        if (cs->subtyp == AVM_FRITZ_PNP)
            p = (u_char *) ptr;
        t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
                 bcs->channel ? 'B' : 'A', count);
        QuickHex(t, p, count);
        debugl1(cs, bcs->blog);
    }
}

static void
fill_hdlc(struct BCState *bcs)
{
    long flags;
    save_flags(flags);
    cli();
    hdlc_fill_fifo(bcs);
    restore_flags(flags);
}

static inline void
HDLC_irq(struct BCState *bcs, u_int stat) {
    int len;
    struct sk_buff *skb;

    if (bcs->cs->debug & L1_DEB_HSCX)
        debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
    if (stat & HDLC_INT_RPR) {
        if (stat & HDLC_STAT_RDO) {
            if (bcs->cs->debug & L1_DEB_HSCX)
                debugl1(bcs->cs, "RDO");
            else
                debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
            bcs->hw.hdlc.ctrl.sr.xml = 0;
            bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
            write_ctrl(bcs, 1);
            bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
            write_ctrl(bcs, 1);
            bcs->hw.hdlc.rcvidx = 0;
        } else {
            if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
                len = 32;
            hdlc_empty_fifo(bcs, len);
            if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
                if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
                    (bcs->mode == L1_MODE_TRANS)) {
                    if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
                        printk(KERN_WARNING "HDLC: receive out of memory\n");
                    else {
                        memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
                            bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
                        skb_queue_tail(&bcs->rqueue, skb);
                    }
                    bcs->hw.hdlc.rcvidx = 0;
                    hdlc_sched_event(bcs, B_RCVBUFREADY);
                } else {
                    if (bcs->cs->debug & L1_DEB_HSCX)
                        debugl1(bcs->cs, "invalid frame");
                    else
                        debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
                    bcs->hw.hdlc.rcvidx = 0;
                }
            }
        }
    }
    if (stat & HDLC_INT_XDU) {
        /* Here we lost an TX interrupt, so
         * restart transmitting the whole frame.
         */
        if (bcs->tx_skb) {
            skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
            bcs->tx_cnt += bcs->hw.hdlc.count;
            bcs->hw.hdlc.count = 0;
//            hdlc_sched_event(bcs, B_XMTBUFREADY);
            if (bcs->cs->debug & L1_DEB_WARN)
                debugl1(bcs->cs, "ch%d XDU", bcs->channel);
        } else if (bcs->cs->debug & L1_DEB_WARN)
            debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
        bcs->hw.hdlc.ctrl.sr.xml = 0;
        bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
        write_ctrl(bcs, 1);
        bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
        write_ctrl(bcs, 1);
        hdlc_fill_fifo(bcs);
    } else if (stat & HDLC_INT_XPR) {
        if (bcs->tx_skb) {
            if (bcs->tx_skb->len) {
                hdlc_fill_fifo(bcs);
                return;
            } else {
                if (bcs->st->lli.l1writewakeup &&
                    (PACKET_NOACK != bcs->tx_skb->pkt_type))
                    bcs->st->lli.l1writewakeup(bcs->st, bcs->hw.hdlc.count);
                dev_kfree_skb_irq(bcs->tx_skb);
                bcs->hw.hdlc.count = 0;
                bcs->tx_skb = NULL;
            }
        }
        if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
            bcs->hw.hdlc.count = 0;
            test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
            hdlc_fill_fifo(bcs);
        } else {
            test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
            hdlc_sched_event(bcs, B_XMTBUFREADY);
        }
    }
}

inline void
HDLC_irq_main(struct IsdnCardState *cs)
{
    u_int stat;
    long  flags;
    struct BCState *bcs;

    save_flags(flags);
    cli();
    if (cs->subtyp == AVM_FRITZ_PCI) {
        stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
    } else {
        stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
        if (stat & HDLC_INT_RPR)
            stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
    }
    if (stat & HDLC_INT_MASK) {
        if (!(bcs = Sel_BCS(cs, 0))) {
            if (cs->debug)
                debugl1(cs, "hdlc spurious channel 0 IRQ");
        } else
            HDLC_irq(bcs, stat);
    }
    if (cs->subtyp == AVM_FRITZ_PCI) {
        stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
    } else {
        stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
        if (stat & HDLC_INT_RPR)
            stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
    }
    if (stat & HDLC_INT_MASK) {
        if (!(bcs = Sel_BCS(cs, 1))) {
            if (cs->debug)
                debugl1(cs, "hdlc spurious channel 1 IRQ");
        } else
            HDLC_irq(bcs, stat);
    }
    restore_flags(flags);
}

void
hdlc_l2l1(struct PStack *st, int pr, void *arg)
{
    struct sk_buff *skb = arg;
    long flags;

    switch (pr) {
        case (PH_DATA | REQUEST):
            save_flags(flags);
            cli();
            if (st->l1.bcs->tx_skb) {
                skb_queue_tail(&st->l1.bcs->squeue, skb);
                restore_flags(flags);
            } else {
                st->l1.bcs->tx_skb = skb;
                test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
                st->l1.bcs->hw.hdlc.count = 0;
                restore_flags(flags);
                st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
            }
            break;
        case (PH_PULL | INDICATION):
            if (st->l1.bcs->tx_skb) {
                printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
                break;
            }
            test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
            st->l1.bcs->tx_skb = skb;
            st->l1.bcs->hw.hdlc.count = 0;
            st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
            break;
        case (PH_PULL | REQUEST):
            if (!st->l1.bcs->tx_skb) {
                test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
                st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
            } else
                test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
            break;
        case (PH_ACTIVATE | REQUEST):
            test_and_set_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
            modehdlc(st->l1.bcs, st->l1.mode, st->l1.bc);
            l1_msg_b(st, pr, arg);
            break;
        case (PH_DEACTIVATE | REQUEST):
            l1_msg_b(st, pr, arg);
            break;
        case (PH_DEACTIVATE | CONFIRM):
            test_and_clear_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
            test_and_clear_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
            modehdlc(st->l1.bcs, 0, st->l1.bc);
            st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
            break;
    }
}

void
close_hdlcstate(struct BCState *bcs)
{
    modehdlc(bcs, 0, 0);
    if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
        if (bcs->hw.hdlc.rcvbuf) {
            kfree(bcs->hw.hdlc.rcvbuf);
            bcs->hw.hdlc.rcvbuf = NULL;
        }
        if (bcs->blog) {
            kfree(bcs->blog);
            bcs->blog = NULL;
        }
        skb_queue_purge(&bcs->rqueue);
        skb_queue_purge(&bcs->squeue);
        if (bcs->tx_skb) {
            dev_kfree_skb_any(bcs->tx_skb);
            bcs->tx_skb = NULL;
            test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
        }
    }
}

int
open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
{
    if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
        if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
            printk(KERN_WARNING
                   "HiSax: No memory for hdlc.rcvbuf\n");
            return (1);
        }
        if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
            printk(KERN_WARNING
                "HiSax: No memory for bcs->blog\n");
            test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
            kfree(bcs->hw.hdlc.rcvbuf);
            bcs->hw.hdlc.rcvbuf = NULL;
            return (2);
        }
        skb_queue_head_init(&bcs->rqueue);
        skb_queue_head_init(&bcs->squeue);
    }
    bcs->tx_skb = NULL;
    test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
    bcs->event = 0;
    bcs->hw.hdlc.rcvidx = 0;
    bcs->tx_cnt = 0;
    return (0);
}

int
setstack_hdlc(struct PStack *st, struct BCState *bcs)
{
    bcs->channel = st->l1.bc;
    if (open_hdlcstate(st->l1.hardware, bcs))
        return (-1);
    st->l1.bcs = bcs;
    st->l2.l2l1 = hdlc_l2l1;
    setstack_manager(st);
    bcs->st = st;
    setstack_l1_B(st);
    return (0);
}

void __init
clear_pending_hdlc_ints(struct IsdnCardState *cs)
{
    u_int val;

    if (cs->subtyp == AVM_FRITZ_PCI) {
        val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
        debugl1(cs, "HDLC 1 STA %x", val);
        val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
        debugl1(cs, "HDLC 2 STA %x", val);
    } else {
        val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
        debugl1(cs, "HDLC 1 STA %x", val);
        val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
        debugl1(cs, "HDLC 1 RML %x", val);
        val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
        debugl1(cs, "HDLC 1 MODE %x", val);
        val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
        debugl1(cs, "HDLC 1 VIN %x", val);
        val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
        debugl1(cs, "HDLC 2 STA %x", val);
        val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
        debugl1(cs, "HDLC 2 RML %x", val);
        val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
        debugl1(cs, "HDLC 2 MODE %x", val);
        val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
        debugl1(cs, "HDLC 2 VIN %x", val);
    }
}

void __init
inithdlc(struct IsdnCardState *cs)
{
    cs->bcs[0].BC_SetStack = setstack_hdlc;
    cs->bcs[1].BC_SetStack = setstack_hdlc;
    cs->bcs[0].BC_Close = close_hdlcstate;
    cs->bcs[1].BC_Close = close_hdlcstate;
    modehdlc(cs->bcs, -1, 0);
    modehdlc(cs->bcs + 1, -1, 1);
}

static void
avm_pcipnp_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
    struct IsdnCardState *cs = dev_id;
    u_char val;
    u_char sval;

    if (!cs) {
        printk(KERN_WARNING "AVM PCI: Spurious interrupt!\n");
        return;
    }
    sval = inb(cs->hw.avm.cfg_reg + 2);
    if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK)
        /* possible a shared  IRQ reqest */
        return;
    if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
        val = ReadISAC(cs, ISAC_ISTA);
        isac_interrupt(cs, val);
    }
    if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
        HDLC_irq_main(cs);
    }
    WriteISAC(cs, ISAC_MASK, 0xFF);
    WriteISAC(cs, ISAC_MASK, 0x0);
}

static void
reset_avmpcipnp(struct IsdnCardState *cs)
{
    long flags;

    printk(KERN_INFO "AVM PCI/PnP: reset\n");
    save_flags(flags);
    sti();
    outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
    set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_timeout((10*HZ)/1000); /* Timeout 10ms */
    outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
    outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
    set_current_state(TASK_UNINTERRUPTIBLE);
    schedule_timeout((10*HZ)/1000); /* Timeout 10ms */
    printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
}

static int
AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
    switch (mt) {
        case CARD_RESET:
            reset_avmpcipnp(cs);
            return(0);
        case CARD_RELEASE:
            outb(0, cs->hw.avm.cfg_reg + 2);
            release_region(cs->hw.avm.cfg_reg, 32);
            return(0);
        case CARD_INIT:
            clear_pending_isac_ints(cs);
            initisac(cs);
            clear_pending_hdlc_ints(cs);
            inithdlc(cs);
            outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
                cs->hw.avm.cfg_reg + 2);
            WriteISAC(cs, ISAC_MASK, 0);
            outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
                AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
            /* RESET Receiver and Transmitter */
            WriteISAC(cs, ISAC_CMDR, 0x41);
            return(0);
        case CARD_TEST:
            return(0);
    }
    return(0);
}

static struct pci_dev *dev_avm __initdata = NULL;

int __init
setup_avm_pcipnp(struct IsdnCard *card)
{
    u_int val, ver;
    struct IsdnCardState *cs = card->cs;
    char tmp[64];

    strcpy(tmp, avm_pci_rev);
    printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
    if (cs->typ != ISDN_CTYPE_FRITZPCI)
        return (0);
    if (card->para[1]) {
        cs->hw.avm.cfg_reg = card->para[1];
        cs->irq = card->para[0];
        cs->subtyp = AVM_FRITZ_PNP;
    } else {
#if CONFIG_PCI
        if (!pci_present()) {
            printk(KERN_ERR "FritzPCI: no PCI bus present\n");
            return(0);
        }
        if ((dev_avm = pci_find_device(PCI_VENDOR_ID_AVM,
            PCI_DEVICE_ID_AVM_A1,  dev_avm))) {
            cs->irq = dev_avm->irq;
            if (!cs->irq) {
                printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
                return(0);
            }
            if (pci_enable_device(dev_avm))
                return(0);
            cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
            if (!cs->hw.avm.cfg_reg) {
                printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
                return(0);
            }
            cs->subtyp = AVM_FRITZ_PCI;
        } else {
            printk(KERN_WARNING "FritzPCI: No PCI card found\n");
            return(0);
        }
        cs->irq_flags |= SA_SHIRQ;
#else
        printk(KERN_WARNING "FritzPCI: NO_PCI_BIOS\n");
        return (0);
#endif /* CONFIG_PCI */
    }
    cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
    if (check_region((cs->hw.avm.cfg_reg), 32)) {
        printk(KERN_WARNING
               "HiSax: %s config port %x-%x already in use\n",
               CardType[card->typ],
               cs->hw.avm.cfg_reg,
               cs->hw.avm.cfg_reg + 31);
        return (0);
    } else {
        request_region(cs->hw.avm.cfg_reg, 32,
            (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP");
    }
    switch (cs->subtyp) {
      case AVM_FRITZ_PCI:
        val = inl(cs->hw.avm.cfg_reg);
        printk(KERN_INFO "AVM PCI: stat %#x\n", val);
        printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
            val & 0xff, (val>>8) & 0xff);
        cs->BC_Read_Reg = &ReadHDLC_s;
        cs->BC_Write_Reg = &WriteHDLC_s;
        break;
      case AVM_FRITZ_PNP:
        val = inb(cs->hw.avm.cfg_reg);
        ver = inb(cs->hw.avm.cfg_reg + 1);
        printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
        reset_avmpcipnp(cs);
        cs->BC_Read_Reg = &ReadHDLCPnP;
        cs->BC_Write_Reg = &WriteHDLCPnP;
        break;
      default:
          printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
          return(0);
    }
    printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
        (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
        cs->irq, cs->hw.avm.cfg_reg);

    cs->readisac = &ReadISAC;
    cs->writeisac = &WriteISAC;
    cs->readisacfifo = &ReadISACfifo;
    cs->writeisacfifo = &WriteISACfifo;
    cs->BC_Send_Data = &fill_hdlc;
    cs->cardmsg = &AVM_card_msg;
    cs->irq_func = &avm_pcipnp_interrupt;
    ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
    return (1);
}

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0204 ]--