Viewing file: vt.c (31.53 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * linux/drivers/char/vt.c * * Copyright (C) 1992 obz under the linux copyright * * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995 * Some code moved for less code duplication - Andi Kleen - Mar 1997 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001 */
#include <linux/config.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/tty.h> #include <linux/timer.h> #include <linux/kernel.h> #include <linux/kd.h> #include <linux/vt.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/major.h> #include <linux/fs.h> #include <linux/console.h>
#include <asm/io.h> #include <asm/uaccess.h>
#include <linux/kbd_kern.h> #include <linux/vt_kern.h> #include <linux/kbd_diacr.h> #include <linux/selection.h>
#ifdef CONFIG_FB_COMPAT_XPMAC #include <asm/vc_ioctl.h> #endif /* CONFIG_FB_COMPAT_XPMAC */
char vt_dont_switch; extern struct tty_driver console_driver;
#define VT_IS_IN_USE(i) (console_driver.table[i] && console_driver.table[i]->count) #define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || i == sel_cons)
/* * Console (vt and kd) routines, as defined by USL SVR4 manual, and by * experimentation and study of X386 SYSV handling. * * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console, * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing * to the current console is done by the main ioctl code. */
struct vt_struct *vt_cons[MAX_NR_CONSOLES];
/* Keyboard type: Default is KB_101, but can be set by machine * specific code. */ unsigned char keyboard_type = KB_101;
#if !defined(__alpha__) && !defined(__ia64__) && !defined(__mips__) && !defined(__arm__) && !defined(__sh__) asmlinkage long sys_ioperm(unsigned long from, unsigned long num, int on); #endif
unsigned int video_font_height; unsigned int default_font_height; unsigned int video_scan_lines;
/* * these are the valid i/o ports we're allowed to change. they map all the * video ports */ #define GPFIRST 0x3b4 #define GPLAST 0x3df #define GPNUM (GPLAST - GPFIRST + 1)
/* * Generates sound of some frequency for some number of clock ticks * * If freq is 0, will turn off sound, else will turn it on for that time. * If msec is 0, will return immediately, else will sleep for msec time, then * turn sound off. * * We also return immediately, which is what was implied within the X * comments - KDMKTONE doesn't put the process to sleep. */
#if defined(__i386__) || defined(__alpha__) || defined(__powerpc__) \ || (defined(__mips__) && defined(CONFIG_ISA)) \ || (defined(__arm__) && defined(CONFIG_HOST_FOOTBRIDGE)) \ || defined(__x86_64__)
static void kd_nosound(unsigned long ignored) { /* disable counter 2 */ outb(inb_p(0x61)&0xFC, 0x61); return; }
void _kd_mksound(unsigned int hz, unsigned int ticks) { static struct timer_list sound_timer = { function: kd_nosound }; unsigned int count = 0; unsigned long flags;
if (hz > 20 && hz < 32767) count = 1193180 / hz; save_flags(flags); cli(); del_timer(&sound_timer); if (count) { /* enable counter 2 */ outb_p(inb_p(0x61)|3, 0x61); /* set command for counter 2, 2 byte write */ outb_p(0xB6, 0x43); /* select desired HZ */ outb_p(count & 0xff, 0x42); outb((count >> 8) & 0xff, 0x42);
if (ticks) { sound_timer.expires = jiffies+ticks; add_timer(&sound_timer); } } else kd_nosound(0); restore_flags(flags); return; }
#else
void _kd_mksound(unsigned int hz, unsigned int ticks) { }
#endif
int _kbd_rate(struct kbd_repeat *rep) { return -EINVAL; }
void (*kd_mksound)(unsigned int hz, unsigned int ticks) = _kd_mksound; int (*kbd_rate)(struct kbd_repeat *rep) = _kbd_rate;
#define i (tmp.kb_index) #define s (tmp.kb_table) #define v (tmp.kb_value) static inline int do_kdsk_ioctl(int cmd, struct kbentry *user_kbe, int perm, struct kbd_struct *kbd) { struct kbentry tmp; ushort *key_map, val, ov;
if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry))) return -EFAULT; if (i >= NR_KEYS || s >= MAX_NR_KEYMAPS) return -EINVAL;
switch (cmd) { case KDGKBENT: key_map = key_maps[s]; if (key_map) { val = U(key_map[i]); if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES) val = K_HOLE; } else val = (i ? K_HOLE : K_NOSUCHMAP); return put_user(val, &user_kbe->kb_value); case KDSKBENT: if (!perm) return -EPERM; if (!i && v == K_NOSUCHMAP) { /* disallocate map */ key_map = key_maps[s]; if (s && key_map) { key_maps[s] = 0; if (key_map[0] == U(K_ALLOCATED)) { kfree(key_map); keymap_count--; } } break; }
if (KTYP(v) < NR_TYPES) { if (KVAL(v) > max_vals[KTYP(v)]) return -EINVAL; } else if (kbd->kbdmode != VC_UNICODE) return -EINVAL;
/* ++Geert: non-PC keyboards may generate keycode zero */ #if !defined(__mc68000__) && !defined(__powerpc__) /* assignment to entry 0 only tests validity of args */ if (!i) break; #endif
if (!(key_map = key_maps[s])) { int j;
if (keymap_count >= MAX_NR_OF_USER_KEYMAPS && !capable(CAP_SYS_RESOURCE)) return -EPERM;
key_map = (ushort *) kmalloc(sizeof(plain_map), GFP_KERNEL); if (!key_map) return -ENOMEM; key_maps[s] = key_map; key_map[0] = U(K_ALLOCATED); for (j = 1; j < NR_KEYS; j++) key_map[j] = U(K_HOLE); keymap_count++; } ov = U(key_map[i]); if (v == ov) break; /* nothing to do */ /* * Attention Key. */ if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) return -EPERM; key_map[i] = U(v); if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT)) compute_shiftstate(); break; } return 0; } #undef i #undef s #undef v
static inline int do_kbkeycode_ioctl(int cmd, struct kbkeycode *user_kbkc, int perm) { struct kbkeycode tmp; int kc = 0;
if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode))) return -EFAULT; switch (cmd) { case KDGETKEYCODE: kc = getkeycode(tmp.scancode); if (kc >= 0) kc = put_user(kc, &user_kbkc->keycode); break; case KDSETKEYCODE: if (!perm) return -EPERM; kc = setkeycode(tmp.scancode, tmp.keycode); break; } return kc; }
static inline int do_kdgkb_ioctl(int cmd, struct kbsentry *user_kdgkb, int perm) { struct kbsentry tmp; char *p; u_char *q; int sz; int delta; char *first_free, *fj, *fnw; int i, j, k;
/* we mostly copy too much here (512bytes), but who cares ;) */ if (copy_from_user(&tmp, user_kdgkb, sizeof(struct kbsentry))) return -EFAULT; tmp.kb_string[sizeof(tmp.kb_string)-1] = '\0'; if (tmp.kb_func >= MAX_NR_FUNC) return -EINVAL; i = tmp.kb_func;
switch (cmd) { case KDGKBSENT: sz = sizeof(tmp.kb_string) - 1; /* sz should have been a struct member */ q = user_kdgkb->kb_string; p = func_table[i]; if(p) for ( ; *p && sz; p++, sz--) if (put_user(*p, q++)) return -EFAULT; if (put_user('\0', q)) return -EFAULT; return ((p && *p) ? -EOVERFLOW : 0); case KDSKBSENT: if (!perm) return -EPERM;
q = func_table[i]; first_free = funcbufptr + (funcbufsize - funcbufleft); for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++) ; if (j < MAX_NR_FUNC) fj = func_table[j]; else fj = first_free;
delta = (q ? -strlen(q) : 1) + strlen(tmp.kb_string); if (delta <= funcbufleft) { /* it fits in current buf */ if (j < MAX_NR_FUNC) { memmove(fj + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] += delta; } if (!q) func_table[i] = fj; funcbufleft -= delta; } else { /* allocate a larger buffer */ sz = 256; while (sz < funcbufsize - funcbufleft + delta) sz <<= 1; fnw = (char *) kmalloc(sz, GFP_KERNEL); if(!fnw) return -ENOMEM;
if (!q) func_table[i] = fj; if (fj > funcbufptr) memmove(fnw, funcbufptr, fj - funcbufptr); for (k = 0; k < j; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr);
if (first_free > fj) { memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj); for (k = j; k < MAX_NR_FUNC; k++) if (func_table[k]) func_table[k] = fnw + (func_table[k] - funcbufptr) + delta; } if (funcbufptr != func_buf) kfree(funcbufptr); funcbufptr = fnw; funcbufleft = funcbufleft - delta + sz - funcbufsize; funcbufsize = sz; } strcpy(func_table[i], tmp.kb_string); break; } return 0; }
static inline int do_fontx_ioctl(int cmd, struct consolefontdesc *user_cfd, int perm) { struct consolefontdesc cfdarg; struct console_font_op op; int i;
if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc))) return -EFAULT; switch (cmd) { case PIO_FONTX: if (!perm) return -EPERM; op.op = KD_FONT_OP_SET; op.flags = KD_FONT_FLAG_OLD; op.width = 8; op.height = cfdarg.charheight; op.charcount = cfdarg.charcount; op.data = cfdarg.chardata; return con_font_op(fg_console, &op); case GIO_FONTX: { op.op = KD_FONT_OP_GET; op.flags = KD_FONT_FLAG_OLD; op.width = 8; op.height = cfdarg.charheight; op.charcount = cfdarg.charcount; op.data = cfdarg.chardata; i = con_font_op(fg_console, &op); if (i) return i; cfdarg.charheight = op.height; cfdarg.charcount = op.charcount; if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc))) return -EFAULT; return 0; } } return -EINVAL; }
static inline int do_unimap_ioctl(int cmd, struct unimapdesc *user_ud,int perm) { struct unimapdesc tmp; int i = 0;
if (copy_from_user(&tmp, user_ud, sizeof tmp)) return -EFAULT; if (tmp.entries) { i = verify_area(VERIFY_WRITE, tmp.entries, tmp.entry_ct*sizeof(struct unipair)); if (i) return i; } switch (cmd) { case PIO_UNIMAP: if (!perm) return -EPERM; return con_set_unimap(fg_console, tmp.entry_ct, tmp.entries); case GIO_UNIMAP: return con_get_unimap(fg_console, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries); } return 0; }
/* * We handle the console-specific ioctl's here. We allow the * capability to modify any console, not just the fg_console. */ int vt_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int i, perm; unsigned int console; unsigned char ucval; struct kbd_struct * kbd; struct vt_struct *vt = (struct vt_struct *)tty->driver_data;
console = vt->vc_num;
if (!vc_cons_allocated(console)) /* impossible? */ return -ENOIOCTLCMD;
/* * To have permissions to do most of the vt ioctls, we either have * to be the owner of the tty, or super-user. */ perm = 0; if (current->tty == tty || suser()) perm = 1; kbd = kbd_table + console; switch (cmd) { case KIOCSOUND: if (!perm) return -EPERM; if (arg) arg = 1193180 / arg; kd_mksound(arg, 0); return 0;
case KDMKTONE: if (!perm) return -EPERM; { unsigned int ticks, count; /* * Generate the tone for the appropriate number of ticks. * If the time is zero, turn off sound ourselves. */ ticks = HZ * ((arg >> 16) & 0xffff) / 1000; count = ticks ? (arg & 0xffff) : 0; if (count) count = 1193180 / count; kd_mksound(count, ticks); return 0; }
case KDGKBTYPE: /* * this is naive. */ ucval = keyboard_type; goto setchar;
#if !defined(__alpha__) && !defined(__ia64__) && !defined(__mips__) && !defined(__arm__) && !defined(__sh__) /* * These cannot be implemented on any machine that implements * ioperm() in user level (such as Alpha PCs). */ case KDADDIO: case KDDELIO: /* * KDADDIO and KDDELIO may be able to add ports beyond what * we reject here, but to be safe... */ if (arg < GPFIRST || arg > GPLAST) return -EINVAL; return sys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
case KDENABIO: case KDDISABIO: return sys_ioperm(GPFIRST, GPNUM, (cmd == KDENABIO)) ? -ENXIO : 0; #endif
/* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */ case KDKBDREP: { struct kbd_repeat kbrep; if (!capable(CAP_SYS_ADMIN)) return -EPERM;
if (copy_from_user(&kbrep, (void *)arg, sizeof(struct kbd_repeat))) return -EFAULT; if ((i = kbd_rate( &kbrep ))) return i; if (copy_to_user((void *)arg, &kbrep, sizeof(struct kbd_repeat))) return -EFAULT; return 0; }
case KDSETMODE: /* * currently, setting the mode from KD_TEXT to KD_GRAPHICS * doesn't do a whole lot. i'm not sure if it should do any * restoration of modes or what... */ if (!perm) return -EPERM; switch (arg) { case KD_GRAPHICS: break; case KD_TEXT0: case KD_TEXT1: arg = KD_TEXT; case KD_TEXT: break; default: return -EINVAL; } if (vt_cons[console]->vc_mode == (unsigned char) arg) return 0; vt_cons[console]->vc_mode = (unsigned char) arg; if (console != fg_console) return 0; /* * explicitly blank/unblank the screen if switching modes */ if (arg == KD_TEXT) unblank_screen(); else do_blank_screen(1); return 0;
case KDGETMODE: ucval = vt_cons[console]->vc_mode; goto setint;
case KDMAPDISP: case KDUNMAPDISP: /* * these work like a combination of mmap and KDENABIO. * this could be easily finished. */ return -EINVAL;
case KDSKBMODE: if (!perm) return -EPERM; switch(arg) { case K_RAW: kbd->kbdmode = VC_RAW; break; case K_MEDIUMRAW: kbd->kbdmode = VC_MEDIUMRAW; break; case K_XLATE: kbd->kbdmode = VC_XLATE; compute_shiftstate(); break; case K_UNICODE: kbd->kbdmode = VC_UNICODE; compute_shiftstate(); break; default: return -EINVAL; } if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); return 0;
case KDGKBMODE: ucval = ((kbd->kbdmode == VC_RAW) ? K_RAW : (kbd->kbdmode == VC_MEDIUMRAW) ? K_MEDIUMRAW : (kbd->kbdmode == VC_UNICODE) ? K_UNICODE : K_XLATE); goto setint;
/* this could be folded into KDSKBMODE, but for compatibility reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */ case KDSKBMETA: switch(arg) { case K_METABIT: clr_vc_kbd_mode(kbd, VC_META); break; case K_ESCPREFIX: set_vc_kbd_mode(kbd, VC_META); break; default: return -EINVAL; } return 0;
case KDGKBMETA: ucval = (vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT); setint: return put_user(ucval, (int *)arg);
case KDGETKEYCODE: case KDSETKEYCODE: if(!capable(CAP_SYS_ADMIN)) perm=0; return do_kbkeycode_ioctl(cmd, (struct kbkeycode *)arg, perm);
case KDGKBENT: case KDSKBENT: return do_kdsk_ioctl(cmd, (struct kbentry *)arg, perm, kbd);
case KDGKBSENT: case KDSKBSENT: return do_kdgkb_ioctl(cmd, (struct kbsentry *)arg, perm);
case KDGKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg;
if (put_user(accent_table_size, &a->kb_cnt)) return -EFAULT; if (copy_to_user(a->kbdiacr, accent_table, accent_table_size*sizeof(struct kbdiacr))) return -EFAULT; return 0; }
case KDSKBDIACR: { struct kbdiacrs *a = (struct kbdiacrs *)arg; unsigned int ct;
if (!perm) return -EPERM; if (get_user(ct,&a->kb_cnt)) return -EFAULT; if (ct >= MAX_DIACR) return -EINVAL; accent_table_size = ct; if (copy_from_user(accent_table, a->kbdiacr, ct*sizeof(struct kbdiacr))) return -EFAULT; return 0; }
/* the ioctls below read/set the flags usually shown in the leds */ /* don't use them - they will go away without warning */ case KDGKBLED: ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4); goto setchar;
case KDSKBLED: if (!perm) return -EPERM; if (arg & ~0x77) return -EINVAL; kbd->ledflagstate = (arg & 7); kbd->default_ledflagstate = ((arg >> 4) & 7); set_leds(); return 0;
/* the ioctls below only set the lights, not the functions */ /* for those, see KDGKBLED and KDSKBLED above */ case KDGETLED: ucval = getledstate(); setchar: return put_user(ucval, (char*)arg);
case KDSETLED: if (!perm) return -EPERM; setledstate(kbd, arg); return 0;
/* * A process can indicate its willingness to accept signals * generated by pressing an appropriate key combination. * Thus, one can have a daemon that e.g. spawns a new console * upon a keypress and then changes to it. * Probably init should be changed to do this (and have a * field ks (`keyboard signal') in inittab describing the * desired action), so that the number of background daemons * does not increase. */ case KDSIGACCEPT: { extern int spawnpid, spawnsig; if (!perm || !capable(CAP_KILL)) return -EPERM; if (arg < 1 || arg > _NSIG || arg == SIGKILL) return -EINVAL; spawnpid = current->pid; spawnsig = arg; return 0; }
case VT_SETMODE: { struct vt_mode tmp;
if (!perm) return -EPERM; if (copy_from_user(&tmp, (void*)arg, sizeof(struct vt_mode))) return -EFAULT; if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) return -EINVAL; vt_cons[console]->vt_mode = tmp; /* the frsig is ignored, so we set it to 0 */ vt_cons[console]->vt_mode.frsig = 0; vt_cons[console]->vt_pid = current->pid; /* no switch is required -- saw@shade.msu.ru */ vt_cons[console]->vt_newvt = -1; return 0; }
case VT_GETMODE: return copy_to_user((void*)arg, &(vt_cons[console]->vt_mode), sizeof(struct vt_mode)) ? -EFAULT : 0;
/* * Returns global vt state. Note that VT 0 is always open, since * it's an alias for the current VT, and people can't use it here. * We cannot return state for more than 16 VTs, since v_state is short. */ case VT_GETSTATE: { struct vt_stat *vtstat = (struct vt_stat *)arg; unsigned short state, mask;
if (put_user(fg_console + 1, &vtstat->v_active)) return -EFAULT; state = 1; /* /dev/tty0 is always open */ for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask; ++i, mask <<= 1) if (VT_IS_IN_USE(i)) state |= mask; return put_user(state, &vtstat->v_state); }
/* * Returns the first available (non-opened) console. */ case VT_OPENQRY: for (i = 0; i < MAX_NR_CONSOLES; ++i) if (! VT_IS_IN_USE(i)) break; ucval = i < MAX_NR_CONSOLES ? (i+1) : -1; goto setint;
/* * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num, * with num >= 1 (switches to vt 0, our console, are not allowed, just * to preserve sanity). */ case VT_ACTIVATE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; arg--; i = vc_allocate(arg); if (i) return i; set_console(arg); return 0;
/* * wait until the specified VT has been activated */ case VT_WAITACTIVE: if (!perm) return -EPERM; if (arg == 0 || arg > MAX_NR_CONSOLES) return -ENXIO; return vt_waitactive(arg-1);
/* * If a vt is under process control, the kernel will not switch to it * immediately, but postpone the operation until the process calls this * ioctl, allowing the switch to complete. * * According to the X sources this is the behavior: * 0: pending switch-from not OK * 1: pending switch-from OK * 2: completed switch-to OK */ case VT_RELDISP: if (!perm) return -EPERM; if (vt_cons[console]->vt_mode.mode != VT_PROCESS) return -EINVAL;
/* * Switching-from response */ if (vt_cons[console]->vt_newvt >= 0) { if (arg == 0) /* * Switch disallowed, so forget we were trying * to do it. */ vt_cons[console]->vt_newvt = -1;
else { /* * The current vt has been released, so * complete the switch. */ int newvt = vt_cons[console]->vt_newvt; vt_cons[console]->vt_newvt = -1; i = vc_allocate(newvt); if (i) return i; /* * When we actually do the console switch, * make sure we are atomic with respect to * other console switches.. */ acquire_console_sem(); complete_change_console(newvt); release_console_sem(); } }
/* * Switched-to response */ else { /* * If it's just an ACK, ignore it */ if (arg != VT_ACKACQ) return -EINVAL; }
return 0;
/* * Disallocate memory associated to VT (but leave VT1) */ case VT_DISALLOCATE: if (arg > MAX_NR_CONSOLES) return -ENXIO; if (arg == 0) { /* disallocate all unused consoles, but leave 0 */ for (i=1; i<MAX_NR_CONSOLES; i++) if (! VT_BUSY(i)) vc_disallocate(i); } else { /* disallocate a single console, if possible */ arg--; if (VT_BUSY(arg)) return -EBUSY; if (arg) /* leave 0 */ vc_disallocate(arg); } return 0;
case VT_RESIZE: { struct vt_sizes *vtsizes = (struct vt_sizes *) arg; ushort ll,cc; if (!perm) return -EPERM; if (get_user(ll, &vtsizes->v_rows) || get_user(cc, &vtsizes->v_cols)) return -EFAULT; return vc_resize_all(ll, cc); }
case VT_RESIZEX: { struct vt_consize *vtconsize = (struct vt_consize *) arg; ushort ll,cc,vlin,clin,vcol,ccol; if (!perm) return -EPERM; if (verify_area(VERIFY_READ, (void *)vtconsize, sizeof(struct vt_consize))) return -EFAULT; __get_user(ll, &vtconsize->v_rows); __get_user(cc, &vtconsize->v_cols); __get_user(vlin, &vtconsize->v_vlin); __get_user(clin, &vtconsize->v_clin); __get_user(vcol, &vtconsize->v_vcol); __get_user(ccol, &vtconsize->v_ccol); vlin = vlin ? vlin : video_scan_lines; if ( clin ) { if ( ll ) { if ( ll != vlin/clin ) return -EINVAL; /* Parameters don't add up */ } else ll = vlin/clin; } if ( vcol && ccol ) { if ( cc ) { if ( cc != vcol/ccol ) return -EINVAL; } else cc = vcol/ccol; }
if ( clin > 32 ) return -EINVAL; if ( vlin ) video_scan_lines = vlin; if ( clin ) video_font_height = clin; return vc_resize_all(ll, cc); }
case PIO_FONT: { struct console_font_op op; if (!perm) return -EPERM; op.op = KD_FONT_OP_SET; op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */ op.width = 8; op.height = 0; op.charcount = 256; op.data = (char *) arg; return con_font_op(fg_console, &op); }
case GIO_FONT: { struct console_font_op op; op.op = KD_FONT_OP_GET; op.flags = KD_FONT_FLAG_OLD; op.width = 8; op.height = 32; op.charcount = 256; op.data = (char *) arg; return con_font_op(fg_console, &op); }
case PIO_CMAP: if (!perm) return -EPERM; return con_set_cmap((char *)arg);
case GIO_CMAP: return con_get_cmap((char *)arg);
case PIO_FONTX: case GIO_FONTX: return do_fontx_ioctl(cmd, (struct consolefontdesc *)arg, perm);
case PIO_FONTRESET: { if (!perm) return -EPERM;
#ifdef BROKEN_GRAPHICS_PROGRAMS /* With BROKEN_GRAPHICS_PROGRAMS defined, the default font is not saved. */ return -ENOSYS; #else { struct console_font_op op; op.op = KD_FONT_OP_SET_DEFAULT; op.data = NULL; i = con_font_op(fg_console, &op); if (i) return i; con_set_default_unimap(fg_console); return 0; } #endif }
case KDFONTOP: { struct console_font_op op; if (copy_from_user(&op, (void *) arg, sizeof(op))) return -EFAULT; if (!perm && op.op != KD_FONT_OP_GET) return -EPERM; i = con_font_op(console, &op); if (i) return i; if (copy_to_user((void *) arg, &op, sizeof(op))) return -EFAULT; return 0; }
case PIO_SCRNMAP: if (!perm) return -EPERM; return con_set_trans_old((unsigned char *)arg);
case GIO_SCRNMAP: return con_get_trans_old((unsigned char *)arg);
case PIO_UNISCRNMAP: if (!perm) return -EPERM; return con_set_trans_new((unsigned short *)arg);
case GIO_UNISCRNMAP: return con_get_trans_new((unsigned short *)arg);
case PIO_UNIMAPCLR: { struct unimapinit ui; if (!perm) return -EPERM; i = copy_from_user(&ui, (void *)arg, sizeof(struct unimapinit)); if (i) return -EFAULT; con_clear_unimap(fg_console, &ui); return 0; }
case PIO_UNIMAP: case GIO_UNIMAP: return do_unimap_ioctl(cmd, (struct unimapdesc *)arg, perm);
case VT_LOCKSWITCH: if (!suser()) return -EPERM; vt_dont_switch = 1; return 0; case VT_UNLOCKSWITCH: if (!suser()) return -EPERM; vt_dont_switch = 0; return 0; #ifdef CONFIG_FB_COMPAT_XPMAC case VC_GETMODE: { struct vc_mode mode;
i = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct vc_mode)); if (i == 0) i = console_getmode(&mode); if (i) return i; if (copy_to_user((void *) arg, &mode, sizeof(mode))) return -EFAULT; return 0; } case VC_SETMODE: case VC_INQMODE: { struct vc_mode mode;
if (!perm) return -EPERM; if (copy_from_user(&mode, (void *) arg, sizeof(mode))) return -EFAULT; return console_setmode(&mode, cmd == VC_SETMODE); } case VC_SETCMAP: { unsigned char cmap[3][256], *p; int n_entries, cmap_size, i, j;
if (!perm) return -EPERM; if (arg == (unsigned long) VC_POWERMODE_INQUIRY || arg <= VESA_POWERDOWN) { /* compatibility hack: VC_POWERMODE was changed from 0x766a to 0x766c */ return console_powermode((int) arg); } if (get_user(cmap_size, (int *) arg)) return -EFAULT; if (cmap_size % 3) return -EINVAL; n_entries = cmap_size / 3; if ((unsigned) n_entries > 256) return -EINVAL; p = (unsigned char *) (arg + sizeof(int)); for (j = 0; j < n_entries; ++j) for (i = 0; i < 3; ++i) if (get_user(cmap[i][j], p++)) return -EFAULT; return console_setcmap(n_entries, cmap[0], cmap[1], cmap[2]); } case VC_GETCMAP: /* not implemented yet */ return -ENOIOCTLCMD; case VC_POWERMODE: if (!perm) return -EPERM; return console_powermode((int) arg); #endif /* CONFIG_FB_COMPAT_XPMAC */ default: return -ENOIOCTLCMD; } }
/* * Sometimes we want to wait until a particular VT has been activated. We * do it in a very simple manner. Everybody waits on a single queue and * get woken up at once. Those that are satisfied go on with their business, * while those not ready go back to sleep. Seems overkill to add a wait * to each vt just for this - usually this does nothing! */ static DECLARE_WAIT_QUEUE_HEAD(vt_activate_queue);
/* * Sleeps until a vt is activated, or the task is interrupted. Returns * 0 if activation, -EINTR if interrupted. */ int vt_waitactive(int vt) { int retval; DECLARE_WAITQUEUE(wait, current);
add_wait_queue(&vt_activate_queue, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); retval = 0; if (vt == fg_console) break; retval = -EINTR; if (signal_pending(current)) break; schedule(); } remove_wait_queue(&vt_activate_queue, &wait); current->state = TASK_RUNNING; return retval; }
#define vt_wake_waitactive() wake_up(&vt_activate_queue)
void reset_vc(unsigned int new_console) { vt_cons[new_console]->vc_mode = KD_TEXT; kbd_table[new_console].kbdmode = VC_XLATE; vt_cons[new_console]->vt_mode.mode = VT_AUTO; vt_cons[new_console]->vt_mode.waitv = 0; vt_cons[new_console]->vt_mode.relsig = 0; vt_cons[new_console]->vt_mode.acqsig = 0; vt_cons[new_console]->vt_mode.frsig = 0; vt_cons[new_console]->vt_pid = -1; vt_cons[new_console]->vt_newvt = -1; if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */ reset_palette(new_console) ; }
/* * Performs the back end of a vt switch */ void complete_change_console(unsigned int new_console) { unsigned char old_vc_mode;
last_console = fg_console;
/* * If we're switching, we could be going from KD_GRAPHICS to * KD_TEXT mode or vice versa, which means we need to blank or * unblank the screen later. */ old_vc_mode = vt_cons[fg_console]->vc_mode; switch_screen(new_console);
/* * This can't appear below a successful kill_proc(). If it did, * then the *blank_screen operation could occur while X, having * received acqsig, is waking up on another processor. This * condition can lead to overlapping accesses to the VGA range * and the framebuffer (causing system lockups). * * To account for this we duplicate this code below only if the * controlling process is gone and we've called reset_vc. */ if (old_vc_mode != vt_cons[new_console]->vc_mode) { if (vt_cons[new_console]->vc_mode == KD_TEXT) unblank_screen(); else do_blank_screen(1); }
/* * If this new console is under process control, send it a signal * telling it that it has acquired. Also check if it has died and * clean up (similar to logic employed in change_console()) */ if (vt_cons[new_console]->vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_proc() will * tell us if the process has gone or something else * is awry */ if (kill_proc(vt_cons[new_console]->vt_pid, vt_cons[new_console]->vt_mode.acqsig, 1) != 0) { /* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ reset_vc(new_console);
if (old_vc_mode != vt_cons[new_console]->vc_mode) { if (vt_cons[new_console]->vc_mode == KD_TEXT) unblank_screen(); else do_blank_screen(1); } } }
/* * Wake anyone waiting for their VT to activate */ vt_wake_waitactive(); return; }
/* * Performs the front-end of a vt switch */ void change_console(unsigned int new_console) { if ((new_console == fg_console) || (vt_dont_switch)) return; if (!vc_cons_allocated(new_console)) return;
/* * If this vt is in process mode, then we need to handshake with * that process before switching. Essentially, we store where that * vt wants to switch to and wait for it to tell us when it's done * (via VT_RELDISP ioctl). * * We also check to see if the controlling process still exists. * If it doesn't, we reset this vt to auto mode and continue. * This is a cheap way to track process control. The worst thing * that can happen is: we send a signal to a process, it dies, and * the switch gets "lost" waiting for a response; hopefully, the * user will try again, we'll detect the process is gone (unless * the user waits just the right amount of time :-) and revert the * vt to auto control. */ if (vt_cons[fg_console]->vt_mode.mode == VT_PROCESS) { /* * Send the signal as privileged - kill_proc() will * tell us if the process has gone or something else * is awry */ if (kill_proc(vt_cons[fg_console]->vt_pid, vt_cons[fg_console]->vt_mode.relsig, 1) == 0) { /* * It worked. Mark the vt to switch to and * return. The process needs to send us a * VT_RELDISP ioctl to complete the switch. */ vt_cons[fg_console]->vt_newvt = new_console; return; }
/* * The controlling process has died, so we revert back to * normal operation. In this case, we'll also change back * to KD_TEXT mode. I'm not sure if this is strictly correct * but it saves the agony when the X server dies and the screen * remains blanked due to KD_GRAPHICS! It would be nice to do * this outside of VT_PROCESS but there is no single process * to account for and tracking tty count may be undesirable. */ reset_vc(fg_console);
/* * Fall through to normal (VT_AUTO) handling of the switch... */ }
/* * Ignore all switches in KD_GRAPHICS+VT_AUTO mode */ if (vt_cons[fg_console]->vc_mode == KD_GRAPHICS) return;
complete_change_console(new_console); }
|