!C99Shell v. 1.0 pre-release build #13!

Software: Apache/2.0.54 (Unix) mod_perl/1.99_09 Perl/v5.8.0 mod_ssl/2.0.54 OpenSSL/0.9.7l DAV/2 FrontPage/5.0.2.2635 PHP/4.4.0 mod_gzip/2.0.26.1a 

uname -a: Linux snow.he.net 4.4.276-v2-mono-1 #1 SMP Wed Jul 21 11:21:17 PDT 2021 i686 

uid=99(nobody) gid=98(nobody) groups=98(nobody) 

Safe-mode: OFF (not secure)

/usr/src/linux-2.4.18-xfs-1.1/drivers/block/   drwxr-xr-x
Free 318.38 GB of 458.09 GB (69.5%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     swim3.c (27.7 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/*
 * Driver for the SWIM3 (Super Woz Integrated Machine 3)
 * floppy controller found on Power Macintoshes.
 *
 * Copyright (C) 1996 Paul Mackerras.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

/*
 * TODO:
 * handle 2 drives
 * handle GCR disks
 */

#include <linux/config.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/delay.h>
#include <linux/fd.h>
#include <linux/ioctl.h>
#include <asm/io.h>
#include <asm/dbdma.h>
#include <asm/prom.h>
#include <asm/uaccess.h>
#include <asm/mediabay.h>
#include <asm/machdep.h>
#include <asm/pmac_feature.h>

#define MAJOR_NR    FLOPPY_MAJOR
#include <linux/blk.h>
#include <linux/devfs_fs_kernel.h>

static int floppy_blocksizes[2] = {512,512};
static int floppy_sizes[2] = {1440,1440};

#define MAX_FLOPPIES    2

enum swim_state {
    idle,
    locating,
    seeking,
    settling,
    do_transfer,
    jogging,
    available,
    revalidating,
    ejecting
};

#define REG(x)    unsigned char x; char x ## _pad[15];

/*
 * The names for these registers mostly represent speculation on my part.
 * It will be interesting to see how close they are to the names Apple uses.
 */
struct swim3 {
    REG(data);
    REG(timer);        /* counts down at 1MHz */
    REG(error);
    REG(mode);
    REG(select);        /* controls CA0, CA1, CA2 and LSTRB signals */
    REG(setup);
    REG(control);        /* writing bits clears them */
    REG(status);        /* writing bits sets them in control */
    REG(intr);
    REG(nseek);        /* # tracks to seek */
    REG(ctrack);        /* current track number */
    REG(csect);        /* current sector number */
    REG(gap3);        /* size of gap 3 in track format */
    REG(sector);        /* sector # to read or write */
    REG(nsect);        /* # sectors to read or write */
    REG(intr_enable);
};

#define control_bic    control
#define control_bis    status

/* Bits in select register */
#define CA_MASK        7
#define LSTRB        8

/* Bits in control register */
#define DO_SEEK        0x80
#define FORMAT        0x40
#define SELECT        0x20
#define WRITE_SECTORS    0x10
#define DO_ACTION    0x08
#define DRIVE2_ENABLE    0x04
#define DRIVE_ENABLE    0x02
#define INTR_ENABLE    0x01

/* Bits in status register */
#define FIFO_1BYTE    0x80
#define FIFO_2BYTE    0x40
#define ERROR        0x20
#define DATA        0x08
#define RDDATA        0x04
#define INTR_PENDING    0x02
#define MARK_BYTE    0x01

/* Bits in intr and intr_enable registers */
#define ERROR_INTR    0x20
#define DATA_CHANGED    0x10
#define TRANSFER_DONE    0x08
#define SEEN_SECTOR    0x04
#define SEEK_DONE    0x02
#define TIMER_DONE    0x01

/* Bits in error register */
#define ERR_DATA_CRC    0x80
#define ERR_ADDR_CRC    0x40
#define ERR_OVERRUN    0x04
#define ERR_UNDERRUN    0x01

/* Bits in setup register */
#define S_SW_RESET    0x80
#define S_GCR_WRITE    0x40
#define S_IBM_DRIVE    0x20
#define S_TEST_MODE    0x10
#define S_FCLK_DIV2    0x08
#define S_GCR        0x04
#define S_COPY_PROT    0x02
#define S_INV_WDATA    0x01

/* Select values for swim3_action */
#define SEEK_POSITIVE    0
#define SEEK_NEGATIVE    4
#define STEP        1
#define MOTOR_ON    2
#define MOTOR_OFF    6
#define INDEX        3
#define EJECT        7
#define SETMFM        9
#define SETGCR        13

/* Select values for swim3_select and swim3_readbit */
#define STEP_DIR    0
#define STEPPING    1
#define MOTOR_ON    2
#define RELAX        3    /* also eject in progress */
#define READ_DATA_0    4
#define TWOMEG_DRIVE    5
#define SINGLE_SIDED    6
#define DRIVE_PRESENT    7
#define DISK_IN        8
#define WRITE_PROT    9
#define TRACK_ZERO    10
#define TACHO        11
#define READ_DATA_1    12
#define MFM_MODE    13
#define SEEK_COMPLETE    14
#define ONEMEG_MEDIA    15

/* Definitions of values used in writing and formatting */
#define DATA_ESCAPE    0x99
#define GCR_SYNC_EXC    0x3f
#define GCR_SYNC_CONV    0x80
#define GCR_FIRST_MARK    0xd5
#define GCR_SECOND_MARK    0xaa
#define GCR_ADDR_MARK    "\xd5\xaa\x00"
#define GCR_DATA_MARK    "\xd5\xaa\x0b"
#define GCR_SLIP_BYTE    "\x27\xaa"
#define GCR_SELF_SYNC    "\x3f\xbf\x1e\x34\x3c\x3f"

#define DATA_99        "\x99\x99"
#define MFM_ADDR_MARK    "\x99\xa1\x99\xa1\x99\xa1\x99\xfe"
#define MFM_INDEX_MARK    "\x99\xc2\x99\xc2\x99\xc2\x99\xfc"
#define MFM_GAP_LEN    12

struct floppy_state {
    enum swim_state    state;
    volatile struct swim3 *swim3;    /* hardware registers */
    struct dbdma_regs *dma;    /* DMA controller registers */
    int    swim3_intr;    /* interrupt number for SWIM3 */
    int    dma_intr;    /* interrupt number for DMA channel */
    int    cur_cyl;    /* cylinder head is on, or -1 */
    int    cur_sector;    /* last sector we saw go past */
    int    req_cyl;    /* the cylinder for the current r/w request */
    int    head;        /* head number ditto */
    int    req_sector;    /* sector number ditto */
    int    scount;        /* # sectors we're transferring at present */
    int    retries;
    int    secpercyl;    /* disk geometry information */
    int    secpertrack;
    int    total_secs;
    int    write_prot;    /* 1 if write-protected, 0 if not, -1 dunno */
    struct dbdma_cmd *dma_cmd;
    int    ref_count;
    int    expect_cyl;
    struct timer_list timeout;
    int    timeout_pending;
    int    ejected;
    wait_queue_head_t wait;
    int    wanted;
    struct device_node*    media_bay; /* NULL when not in bay */
    char    dbdma_cmd_space[5 * sizeof(struct dbdma_cmd)];
};

static struct floppy_state floppy_states[MAX_FLOPPIES];
static int floppy_count = 0;

static unsigned short write_preamble[] = {
    0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e, 0x4e4e,    /* gap field */
    0, 0, 0, 0, 0, 0,            /* sync field */
    0x99a1, 0x99a1, 0x99a1, 0x99fb,        /* data address mark */
    0x990f                    /* no escape for 512 bytes */
};

static unsigned short write_postamble[] = {
    0x9904,                    /* insert CRC */
    0x4e4e, 0x4e4e,
    0x9908,                    /* stop writing */
    0, 0, 0, 0, 0, 0
};

static void swim3_select(struct floppy_state *fs, int sel);
static void swim3_action(struct floppy_state *fs, int action);
static int swim3_readbit(struct floppy_state *fs, int bit);
static void do_fd_request(request_queue_t * q);
static void start_request(struct floppy_state *fs);
static void set_timeout(struct floppy_state *fs, int nticks,
            void (*proc)(unsigned long));
static void scan_track(struct floppy_state *fs);
static void seek_track(struct floppy_state *fs, int n);
static void init_dma(struct dbdma_cmd *cp, int cmd, void *buf, int count);
static void setup_transfer(struct floppy_state *fs);
static void act(struct floppy_state *fs);
static void scan_timeout(unsigned long data);
static void seek_timeout(unsigned long data);
static void xfer_timeout(unsigned long data);
static void swim3_interrupt(int irq, void *dev_id, struct pt_regs *regs);
/*static void fd_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs);*/
static int grab_drive(struct floppy_state *fs, enum swim_state state,
              int interruptible);
static void release_drive(struct floppy_state *fs);
static int fd_eject(struct floppy_state *fs);
static int floppy_ioctl(struct inode *inode, struct file *filp,
            unsigned int cmd, unsigned long param);
static int floppy_open(struct inode *inode, struct file *filp);
static int floppy_release(struct inode *inode, struct file *filp);
static int floppy_check_change(kdev_t dev);
static int floppy_revalidate(kdev_t dev);
static int swim3_add_device(struct device_node *swims);
int swim3_init(void);

#ifndef CONFIG_PMAC_PBOOK
#define check_media_bay(which, what)    1
#endif

static void swim3_select(struct floppy_state *fs, int sel)
{
    volatile struct swim3 *sw = fs->swim3;

    out_8(&sw->select, RELAX);
    if (sel & 8)
        out_8(&sw->control_bis, SELECT);
    else
        out_8(&sw->control_bic, SELECT);
    out_8(&sw->select, sel & CA_MASK);
}

static void swim3_action(struct floppy_state *fs, int action)
{
    volatile struct swim3 *sw = fs->swim3;

    swim3_select(fs, action);
    udelay(1);
    out_8(&sw->select, sw->select | LSTRB);
    udelay(2);
    out_8(&sw->select, sw->select & ~LSTRB);
    udelay(1);
    out_8(&sw->select, RELAX);
}

static int swim3_readbit(struct floppy_state *fs, int bit)
{
    volatile struct swim3 *sw = fs->swim3;
    int stat;

    swim3_select(fs, bit);
    udelay(10);
    stat = in_8(&sw->status);
    out_8(&sw->select, RELAX);
    return (stat & DATA) == 0;
}

static void do_fd_request(request_queue_t * q)
{
    int i;
    for(i=0;i<floppy_count;i++)
    {
        if (floppy_states[i].media_bay &&
            check_media_bay(floppy_states[i].media_bay, MB_FD))
            continue;
        start_request(&floppy_states[i]);
    }
    sti();
}

static void start_request(struct floppy_state *fs)
{
    unsigned long x;

    if (fs->state == idle && fs->wanted) {
        fs->state = available;
        wake_up(&fs->wait);
        return;
    }
    while (!QUEUE_EMPTY && fs->state == idle) {
        if (MAJOR(CURRENT->rq_dev) != MAJOR_NR)
            panic(DEVICE_NAME ": request list destroyed");
        if (CURRENT->bh && !buffer_locked(CURRENT->bh))
            panic(DEVICE_NAME ": block not locked");
#if 0
        printk("do_fd_req: dev=%x cmd=%d sec=%ld nr_sec=%ld buf=%p\n",
               kdev_t_to_nr(CURRENT->rq_dev), CURRENT->cmd,
               CURRENT->sector, CURRENT->nr_sectors, CURRENT->buffer);
        printk("           rq_status=%d errors=%d current_nr_sectors=%ld\n",
               CURRENT->rq_status, CURRENT->errors, CURRENT->current_nr_sectors);
#endif

        if (CURRENT->sector < 0 || CURRENT->sector >= fs->total_secs) {
            end_request(0);
            continue;
        }
        if (CURRENT->current_nr_sectors == 0) {
            end_request(1);
            continue;
        }
        if (fs->ejected) {
            end_request(0);
            continue;
        }

        if (CURRENT->cmd == WRITE) {
            if (fs->write_prot < 0)
                fs->write_prot = swim3_readbit(fs, WRITE_PROT);
            if (fs->write_prot) {
                end_request(0);
                continue;
            }
        }

        fs->req_cyl = CURRENT->sector / fs->secpercyl;
        x = CURRENT->sector % fs->secpercyl;
        fs->head = x / fs->secpertrack;
        fs->req_sector = x % fs->secpertrack + 1;
        fs->state = do_transfer;
        fs->retries = 0;

        act(fs);
    }
}

static void set_timeout(struct floppy_state *fs, int nticks,
            void (*proc)(unsigned long))
{
    unsigned long flags;

    save_flags(flags); cli();
    if (fs->timeout_pending)
        del_timer(&fs->timeout);
    fs->timeout.expires = jiffies + nticks;
    fs->timeout.function = proc;
    fs->timeout.data = (unsigned long) fs;
    add_timer(&fs->timeout);
    fs->timeout_pending = 1;
    restore_flags(flags);
}

static inline void scan_track(struct floppy_state *fs)
{
    volatile struct swim3 *sw = fs->swim3;
    int xx;

    swim3_select(fs, READ_DATA_0);
    xx = sw->intr;        /* clear SEEN_SECTOR bit */
    out_8(&sw->control_bis, DO_ACTION);
    /* enable intr when track found */
    out_8(&sw->intr_enable, ERROR_INTR | SEEN_SECTOR);
    set_timeout(fs, HZ, scan_timeout);    /* enable timeout */
}

static inline void seek_track(struct floppy_state *fs, int n)
{
    volatile struct swim3 *sw = fs->swim3;

    if (n >= 0) {
        swim3_action(fs, SEEK_POSITIVE);
        sw->nseek = n;
    } else {
        swim3_action(fs, SEEK_NEGATIVE);
        sw->nseek = -n;
    }
    fs->expect_cyl = (fs->cur_cyl > 0)? fs->cur_cyl + n: -1;
    swim3_select(fs, STEP);
    out_8(&sw->control_bis, DO_SEEK);
    /* enable intr when seek finished */
    out_8(&sw->intr_enable, ERROR_INTR | SEEK_DONE);
    set_timeout(fs, HZ/2, seek_timeout);    /* enable timeout */
}

static inline void init_dma(struct dbdma_cmd *cp, int cmd,
                void *buf, int count)
{
    st_le16(&cp->req_count, count);
    st_le16(&cp->command, cmd);
    st_le32(&cp->phy_addr, virt_to_bus(buf));
    cp->xfer_status = 0;
}

static inline void setup_transfer(struct floppy_state *fs)
{
    int n;
    volatile struct swim3 *sw = fs->swim3;
    struct dbdma_cmd *cp = fs->dma_cmd;
    struct dbdma_regs *dr = fs->dma;

    if (CURRENT->current_nr_sectors <= 0) {
        printk(KERN_ERR "swim3: transfer 0 sectors?\n");
        return;
    }
    if (CURRENT->cmd == WRITE)
        n = 1;
    else {
        n = fs->secpertrack - fs->req_sector + 1;
        if (n > CURRENT->current_nr_sectors)
            n = CURRENT->current_nr_sectors;
    }
    fs->scount = n;
    swim3_select(fs, fs->head? READ_DATA_1: READ_DATA_0);
    out_8(&sw->sector, fs->req_sector);
    out_8(&sw->nsect, n);
    out_8(&sw->gap3, 0);
    st_le32(&dr->cmdptr, virt_to_bus(cp));
    if (CURRENT->cmd == WRITE) {
        /* Set up 3 dma commands: write preamble, data, postamble */
        init_dma(cp, OUTPUT_MORE, write_preamble, sizeof(write_preamble));
        ++cp;
        init_dma(cp, OUTPUT_MORE, CURRENT->buffer, 512);
        ++cp;
        init_dma(cp, OUTPUT_LAST, write_postamble, sizeof(write_postamble));
    } else {
        init_dma(cp, INPUT_LAST, CURRENT->buffer, n * 512);
    }
    ++cp;
    out_le16(&cp->command, DBDMA_STOP);
    out_le32(&dr->control, (RUN << 16) | RUN);
    out_8(&sw->control_bis,
          (CURRENT->cmd == WRITE? WRITE_SECTORS: 0) | DO_ACTION);
    /* enable intr when transfer complete */
    out_8(&sw->intr_enable, ERROR_INTR | TRANSFER_DONE);
    set_timeout(fs, 2*HZ, xfer_timeout);    /* enable timeout */
}

static void act(struct floppy_state *fs)
{
    volatile struct swim3 *sw = fs->swim3;

    for (;;) {
        switch (fs->state) {
        case idle:
            return;        /* XXX shouldn't get here */

        case locating:
            if (swim3_readbit(fs, TRACK_ZERO)) {
                fs->cur_cyl = 0;
                if (fs->req_cyl == 0)
                    fs->state = do_transfer;
                else
                    fs->state = seeking;
                break;
            }
            scan_track(fs);
            return;

        case seeking:
            if (fs->cur_cyl < 0) {
                fs->expect_cyl = -1;
                fs->state = locating;
                break;
            }
            if (fs->req_cyl == fs->cur_cyl) {
                printk("whoops, seeking 0\n");
                fs->state = do_transfer;
                break;
            }
            seek_track(fs, fs->req_cyl - fs->cur_cyl);
            return;

        case settling:
            /* wait for SEEK_COMPLETE to become true */
            swim3_select(fs, SEEK_COMPLETE);
            udelay(10);
            out_8(&sw->intr_enable, ERROR_INTR | DATA_CHANGED);
            in_8(&sw->intr);    /* clear DATA_CHANGED */
            if (in_8(&sw->status) & DATA) {
                /* seek_complete is not yet true */
                set_timeout(fs, HZ/2, seek_timeout);
                return;
            }
            out_8(&sw->intr_enable, 0);
            in_8(&sw->intr);
            fs->state = locating;
            break;

        case do_transfer:
            if (fs->cur_cyl != fs->req_cyl) {
                if (fs->retries > 5) {
                    end_request(0);
                    fs->state = idle;
                    return;
                }
                fs->state = seeking;
                break;
            }
            setup_transfer(fs);
            return;

        case jogging:
            seek_track(fs, -5);
            return;

        default:
            printk(KERN_ERR"swim3: unknown state %d\n", fs->state);
            return;
        }
    }
}

static void scan_timeout(unsigned long data)
{
    struct floppy_state *fs = (struct floppy_state *) data;
    volatile struct swim3 *sw = fs->swim3;

    fs->timeout_pending = 0;
    out_8(&sw->control_bic, DO_ACTION);
    out_8(&sw->select, RELAX);
    out_8(&sw->intr_enable, 0);
    fs->cur_cyl = -1;
    if (fs->retries > 5) {
        end_request(0);
        fs->state = idle;
        start_request(fs);
    } else {
        fs->state = jogging;
        act(fs);
    }
}

static void seek_timeout(unsigned long data)
{
    struct floppy_state *fs = (struct floppy_state *) data;
    volatile struct swim3 *sw = fs->swim3;

    fs->timeout_pending = 0;
    if (fs->state == settling) {
        printk(KERN_ERR "swim3: MSI sel=%x ctrl=%x stat=%x intr=%x ie=%x\n",
               sw->select, sw->control, sw->status, sw->intr, sw->intr_enable);
    }
    out_8(&sw->control_bic, DO_SEEK);
    out_8(&sw->select, RELAX);
    out_8(&sw->intr_enable, 0);
    if (fs->state == settling && swim3_readbit(fs, SEEK_COMPLETE)) {
        /* printk(KERN_DEBUG "swim3: missed settling interrupt\n"); */
        fs->state = locating;
        act(fs);
        return;
    }
    printk(KERN_ERR "swim3: seek timeout\n");
    end_request(0);
    fs->state = idle;
    start_request(fs);
}

static void xfer_timeout(unsigned long data)
{
    struct floppy_state *fs = (struct floppy_state *) data;
    volatile struct swim3 *sw = fs->swim3;
    struct dbdma_regs *dr = fs->dma;
    struct dbdma_cmd *cp = fs->dma_cmd;
    unsigned long s;

    fs->timeout_pending = 0;
    st_le32(&dr->control, RUN << 16);
    out_8(&sw->intr_enable, 0);
    out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
    out_8(&sw->select, RELAX);
    if (CURRENT->cmd == WRITE)
        ++cp;
    if (ld_le16(&cp->xfer_status) != 0)
        s = fs->scount - ((ld_le16(&cp->res_count) + 511) >> 9);
    else
        s = 0;
    CURRENT->sector += s;
    CURRENT->current_nr_sectors -= s;
    printk(KERN_ERR "swim3: timeout %sing sector %ld\n",
           (CURRENT->cmd==WRITE? "writ": "read"), CURRENT->sector);
    end_request(0);
    fs->state = idle;
    start_request(fs);
}

static void swim3_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
    struct floppy_state *fs = (struct floppy_state *) dev_id;
    volatile struct swim3 *sw = fs->swim3;
    int intr, err, n;
    int stat, resid;
    struct dbdma_regs *dr;
    struct dbdma_cmd *cp;

    err = in_8(&sw->error);
    intr = in_8(&sw->intr);
#if 0
    printk("swim3 intr state=%d intr=%x err=%x\n", fs->state, intr, err);
#endif
    if ((intr & ERROR_INTR) && fs->state != do_transfer)
        printk(KERN_ERR "swim3_interrupt, state=%d, cmd=%x, intr=%x, err=%x\n",
               fs->state, CURRENT->cmd, intr, err);
    switch (fs->state) {
    case locating:
        if (intr & SEEN_SECTOR) {
            out_8(&sw->control_bic, DO_ACTION);
            out_8(&sw->select, RELAX);
            out_8(&sw->intr_enable, 0);
            del_timer(&fs->timeout);
            fs->timeout_pending = 0;
            if (sw->ctrack == 0xff) {
                printk(KERN_ERR "swim3: seen sector but cyl=ff?\n");
                fs->cur_cyl = -1;
                if (fs->retries > 5) {
                    end_request(0);
                    fs->state = idle;
                    start_request(fs);
                } else {
                    fs->state = jogging;
                    act(fs);
                }
                break;
            }
            fs->cur_cyl = sw->ctrack;
            fs->cur_sector = sw->csect;
            if (fs->expect_cyl != -1 && fs->expect_cyl != fs->cur_cyl)
                printk(KERN_ERR "swim3: expected cyl %d, got %d\n",
                       fs->expect_cyl, fs->cur_cyl);
            fs->state = do_transfer;
            act(fs);
        }
        break;
    case seeking:
    case jogging:
        if (sw->nseek == 0) {
            out_8(&sw->control_bic, DO_SEEK);
            out_8(&sw->select, RELAX);
            out_8(&sw->intr_enable, 0);
            del_timer(&fs->timeout);
            fs->timeout_pending = 0;
            if (fs->state == seeking)
                ++fs->retries;
            fs->state = settling;
            act(fs);
        }
        break;
    case settling:
        out_8(&sw->intr_enable, 0);
        del_timer(&fs->timeout);
        fs->timeout_pending = 0;
        act(fs);
        break;
    case do_transfer:
        if ((intr & (ERROR_INTR | TRANSFER_DONE)) == 0)
            break;
        dr = fs->dma;
        cp = fs->dma_cmd;
        /* We must wait a bit for dbdma to complete */
        for (n=0; (in_le32(&dr->status) & ACTIVE) && n < 1000; n++)
            udelay(10);
        DBDMA_DO_STOP(dr);
        out_8(&sw->intr_enable, 0);
        out_8(&sw->control_bic, WRITE_SECTORS | DO_ACTION);
        out_8(&sw->select, RELAX);
        del_timer(&fs->timeout);
        fs->timeout_pending = 0;
        if (CURRENT->cmd == WRITE)
            ++cp;
        stat = ld_le16(&cp->xfer_status);
        resid = ld_le16(&cp->res_count);
        if (intr & ERROR_INTR) {
            n = fs->scount - 1 - resid / 512;
            if (n > 0) {
                CURRENT->sector += n;
                CURRENT->current_nr_sectors -= n;
                CURRENT->buffer += n * 512;
                fs->req_sector += n;
            }
            if (fs->retries < 5) {
                ++fs->retries;
                act(fs);
            } else {
                printk("swim3: error %sing block %ld (err=%x)\n",
                       CURRENT->cmd == WRITE? "writ": "read",
                       CURRENT->sector, err);
                end_request(0);
                fs->state = idle;
            }
        } else {
            if ((stat & ACTIVE) == 0 || resid != 0) {
                /* musta been an error */
                printk(KERN_ERR "swim3: fd dma: stat=%x resid=%d\n", stat, resid);
                printk(KERN_ERR "  state=%d, cmd=%x, intr=%x, err=%x\n",
                       fs->state, CURRENT->cmd, intr, err);
                end_request(0);
                fs->state = idle;
                start_request(fs);
                break;
            }
            CURRENT->sector += fs->scount;
            CURRENT->current_nr_sectors -= fs->scount;
            CURRENT->buffer += fs->scount * 512;
            if (CURRENT->current_nr_sectors <= 0) {
                end_request(1);
                fs->state = idle;
            } else {
                fs->req_sector += fs->scount;
                if (fs->req_sector > fs->secpertrack) {
                    fs->req_sector -= fs->secpertrack;
                    if (++fs->head > 1) {
                        fs->head = 0;
                        ++fs->req_cyl;
                    }
                }
                act(fs);
            }
        }
        if (fs->state == idle)
            start_request(fs);
        break;
    default:
        printk(KERN_ERR "swim3: don't know what to do in state %d\n", fs->state);
    }
}

/*
static void fd_dma_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
}
*/

static int grab_drive(struct floppy_state *fs, enum swim_state state,
              int interruptible)
{
    unsigned long flags;

    save_flags(flags);
    cli();
    if (fs->state != idle) {
        ++fs->wanted;
        while (fs->state != available) {
            if (interruptible && signal_pending(current)) {
                --fs->wanted;
                restore_flags(flags);
                return -EINTR;
            }
            interruptible_sleep_on(&fs->wait);
        }
        --fs->wanted;
    }
    fs->state = state;
    restore_flags(flags);
    return 0;
}

static void release_drive(struct floppy_state *fs)
{
    unsigned long flags;

    save_flags(flags);
    cli();
    fs->state = idle;
    start_request(fs);
    restore_flags(flags);
}

static int fd_eject(struct floppy_state *fs)
{
    int err, n;

    err = grab_drive(fs, ejecting, 1);
    if (err)
        return err;
    swim3_action(fs, EJECT);
    for (n = 2*HZ; n > 0; --n) {
        if (swim3_readbit(fs, RELAX))
            break;
        if (signal_pending(current)) {
            err = -EINTR;
            break;
        }
        current->state = TASK_INTERRUPTIBLE;
        schedule_timeout(1);
    }
    fs->ejected = 1;
    release_drive(fs);
    return err;
}

int swim3_fd_eject(int devnum)
{
    if (devnum >= floppy_count)
        return -ENODEV;
    /* Do not check this - this function should ONLY be called early
     * in the boot process! */
    /* if (floppy_states[devnum].ref_count != 1) return -EBUSY; */
    return fd_eject(&floppy_states[devnum]);
}

static struct floppy_struct floppy_type =
    { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,NULL };    /*  7 1.44MB 3.5"   */

static int floppy_ioctl(struct inode *inode, struct file *filp,
            unsigned int cmd, unsigned long param)
{
    struct floppy_state *fs;
    int err;
    int devnum = MINOR(inode->i_rdev);

    if (devnum >= floppy_count)
        return -ENODEV;
        
    if ((cmd & 0x80) && !suser())
        return -EPERM;

    fs = &floppy_states[devnum];

    if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
        return -ENXIO;

    switch (cmd) {
    case FDEJECT:
        if (fs->ref_count != 1)
            return -EBUSY;
        err = fd_eject(fs);
        return err;
    case FDGETPRM:
            err = copy_to_user((void *) param, (void *) &floppy_type,
                   sizeof(struct floppy_struct));
        return err;
    }
    return -ENOTTY;
}

static int floppy_open(struct inode *inode, struct file *filp)
{
    struct floppy_state *fs;
    volatile struct swim3 *sw;
    int n, err;
    int devnum = MINOR(inode->i_rdev);

    if (devnum >= floppy_count)
        return -ENODEV;
    if (filp == 0)
        return -EIO;
        
    fs = &floppy_states[devnum];
    sw = fs->swim3;
    err = 0;
    if (fs->ref_count == 0) {
        if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
            return -ENXIO;
        out_8(&sw->mode, 0x95);
        out_8(&sw->control_bic, 0xff);
        out_8(&sw->setup, S_IBM_DRIVE | S_FCLK_DIV2);
        udelay(10);
        out_8(&sw->intr_enable, 0);
        out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE);
        swim3_action(fs, MOTOR_ON);
        fs->write_prot = -1;
        fs->cur_cyl = -1;
        for (n = HZ; n > 0; --n) {
            if (swim3_readbit(fs, SEEK_COMPLETE))
                break;
            if (signal_pending(current)) {
                err = -EINTR;
                break;
            }
            current->state = TASK_INTERRUPTIBLE;
            schedule_timeout(1);
        }
        if (err == 0 && (swim3_readbit(fs, SEEK_COMPLETE) == 0
                 || swim3_readbit(fs, DISK_IN) == 0))
            err = -ENXIO;
        swim3_action(fs, 9);

    } else if (fs->ref_count == -1 || filp->f_flags & O_EXCL)
        return -EBUSY;

    if (err == 0 && (filp->f_flags & O_NDELAY) == 0
        && (filp->f_mode & 3)) {
        check_disk_change(inode->i_rdev);
        if (fs->ejected)
            err = -ENXIO;
    }

    if (err == 0 && (filp->f_mode & 2)) {
        if (fs->write_prot < 0)
            fs->write_prot = swim3_readbit(fs, WRITE_PROT);
        if (fs->write_prot)
            err = -EROFS;
    }

    if (err) {
        if (fs->ref_count == 0) {
            swim3_action(fs, MOTOR_OFF);
            out_8(&sw->control_bic, DRIVE_ENABLE | INTR_ENABLE);
        }
        return err;
    }

    if (filp->f_flags & O_EXCL)
        fs->ref_count = -1;
    else
        ++fs->ref_count;

    return 0;
}

static int floppy_release(struct inode *inode, struct file *filp)
{
    struct floppy_state *fs;
    volatile struct swim3 *sw;
    int devnum = MINOR(inode->i_rdev);

    if (devnum >= floppy_count)
        return -ENODEV;

    fs = &floppy_states[devnum];
    sw = fs->swim3;
    if (fs->ref_count > 0 && --fs->ref_count == 0) {
        swim3_action(fs, MOTOR_OFF);
        out_8(&sw->control_bic, 0xff);
    }
    return 0;
}

static int floppy_check_change(kdev_t dev)
{
    struct floppy_state *fs;
    int devnum = MINOR(dev);

    if (MAJOR(dev) != MAJOR_NR || (devnum >= floppy_count))
        return 0;
        
    fs = &floppy_states[devnum];
    return fs->ejected;
}

static int floppy_revalidate(kdev_t dev)
{
    struct floppy_state *fs;
    volatile struct swim3 *sw;
    int ret, n;
    int devnum = MINOR(dev);

    if (MAJOR(dev) != MAJOR_NR || (devnum >= floppy_count))
        return 0;

    fs = &floppy_states[devnum];

    if (fs->media_bay && check_media_bay(fs->media_bay, MB_FD))
        return -ENXIO;

    sw = fs->swim3;
    grab_drive(fs, revalidating, 0);
    out_8(&sw->intr_enable, 0);
    out_8(&sw->control_bis, DRIVE_ENABLE | INTR_ENABLE);
    swim3_action(fs, MOTOR_ON);
    fs->write_prot = -1;
    fs->cur_cyl = -1;
    for (n = HZ; n > 0; --n) {
        if (swim3_readbit(fs, SEEK_COMPLETE))
            break;
        if (signal_pending(current))
            break;
        current->state = TASK_INTERRUPTIBLE;
        schedule_timeout(1);
    }
    ret = swim3_readbit(fs, SEEK_COMPLETE) == 0
        || swim3_readbit(fs, DISK_IN) == 0;
    if (ret)
        swim3_action(fs, MOTOR_OFF);
    else {
        fs->ejected = 0;
        swim3_action(fs, 9);
    }

    release_drive(fs);
    return ret;
}

static void floppy_off(unsigned int nr)
{
}

static struct block_device_operations floppy_fops = {
    open:            floppy_open,
    release:        floppy_release,
    ioctl:            floppy_ioctl,
    check_media_change:    floppy_check_change,
    revalidate:        floppy_revalidate,
};

static devfs_handle_t floppy_devfs_handle;

int swim3_init(void)
{
    struct device_node *swim;

    floppy_devfs_handle = devfs_mk_dir(NULL, "floppy", NULL);

    swim = find_devices("floppy");
    while (swim && (floppy_count < MAX_FLOPPIES))
    {
        swim3_add_device(swim);
        swim = swim->next;
    }

    swim = find_devices("swim3");
    while (swim && (floppy_count < MAX_FLOPPIES))
    {
        swim3_add_device(swim);
        swim = swim->next;
    }

    if (floppy_count > 0)
    {
        if (devfs_register_blkdev(MAJOR_NR, "fd", &floppy_fops)) {
            printk(KERN_ERR "Unable to get major %d for floppy\n",
                   MAJOR_NR);
            return -EBUSY;
        }
        blk_init_queue(BLK_DEFAULT_QUEUE(MAJOR_NR), DEVICE_REQUEST);
        blksize_size[MAJOR_NR] = floppy_blocksizes;
        blk_size[MAJOR_NR] = floppy_sizes;
    }

    return 0;
}

static int swim3_add_device(struct device_node *swim)
{
    struct device_node *mediabay;
    struct floppy_state *fs = &floppy_states[floppy_count];
    char floppy_name[16];
    devfs_handle_t floppy_handle;

    if (swim->n_addrs < 2)
    {
        printk(KERN_INFO "swim3: expecting 2 addrs (n_addrs:%d, n_intrs:%d)\n",
               swim->n_addrs, swim->n_intrs);
        return -EINVAL;
    }

    if (swim->n_intrs < 2)
    {
        printk(KERN_INFO "swim3: expecting 2 intrs (n_addrs:%d, n_intrs:%d)\n",
               swim->n_addrs, swim->n_intrs);
        return -EINVAL;
    }

    if (!request_OF_resource(swim, 0, NULL)) {
        printk(KERN_INFO "swim3: can't request IO resource !\n");
        return -EINVAL;
    }

    mediabay = (strcasecmp(swim->parent->type, "media-bay") == 0) ? swim->parent : NULL;
    if (mediabay == NULL)
        pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 1);
    
    memset(fs, 0, sizeof(*fs));
    fs->state = idle;
    fs->swim3 = (volatile struct swim3 *) ioremap(swim->addrs[0].address, 0x200);
    fs->dma = (struct dbdma_regs *) ioremap(swim->addrs[1].address, 0x200);
    fs->swim3_intr = swim->intrs[0].line;
    fs->dma_intr = swim->intrs[1].line;
    fs->cur_cyl = -1;
    fs->cur_sector = -1;
    fs->secpercyl = 36;
    fs->secpertrack = 18;
    fs->total_secs = 2880;
    fs->media_bay = mediabay;
    init_waitqueue_head(&fs->wait);

    fs->dma_cmd = (struct dbdma_cmd *) DBDMA_ALIGN(fs->dbdma_cmd_space);
    memset(fs->dma_cmd, 0, 2 * sizeof(struct dbdma_cmd));
    st_le16(&fs->dma_cmd[1].command, DBDMA_STOP);

    if (request_irq(fs->swim3_intr, swim3_interrupt, 0, "SWIM3", fs)) {
        printk(KERN_ERR "Couldn't get irq %d for SWIM3\n", fs->swim3_intr);
        pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0);
        return -EBUSY;
    }
/*
    if (request_irq(fs->dma_intr, fd_dma_interrupt, 0, "SWIM3-dma", fs)) {
        printk(KERN_ERR "Couldn't get irq %d for SWIM3 DMA",
               fs->dma_intr);
        pmac_call_feature(PMAC_FTR_SWIM3_ENABLE, swim, 0, 0);
        return -EBUSY;
    }
*/

    init_timer(&fs->timeout);

    do_floppy = NULL;

    printk(KERN_INFO "fd%d: SWIM3 floppy controller %s\n", floppy_count,
        mediabay ? "in media bay" : "");
    sprintf(floppy_name, "%s%d", floppy_devfs_handle ? "" : "floppy",
            floppy_count);
    floppy_handle = devfs_register(floppy_devfs_handle, floppy_name, 
            DEVFS_FL_DEFAULT, MAJOR_NR, floppy_count, 
            S_IFBLK | S_IRUSR | S_IWUSR | S_IRGRP |S_IWGRP, 
            &floppy_fops, NULL);

    floppy_count++;
    
    return 0;
}

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0061 ]--