Viewing file: utmath.c (8.43 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/******************************************************************************* * * Module Name: utmath - Integer math support routines * $Revision: 7 $ * ******************************************************************************/
/* * Copyright (C) 2000, 2001 R. Byron Moore * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "acpi.h"
#define _COMPONENT ACPI_UTILITIES MODULE_NAME ("utmath")
/* * Support for double-precision integer divide. This code is included here * in order to support kernel environments where the double-precision math * library is not available. */
#ifndef ACPI_USE_NATIVE_DIVIDE /******************************************************************************* * * FUNCTION: Acpi_ut_short_divide * * PARAMETERS: In_dividend - Pointer to the dividend * Divisor - 32-bit divisor * Out_quotient - Pointer to where the quotient is returned * Out_remainder - Pointer to where the remainder is returned * * RETURN: Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits) * divide and modulo. The result is a 64-bit quotient and a * 32-bit remainder. * ******************************************************************************/
acpi_status acpi_ut_short_divide ( acpi_integer *in_dividend, u32 divisor, acpi_integer *out_quotient, u32 *out_remainder) { uint64_overlay dividend; uint64_overlay quotient; u32 remainder32;
FUNCTION_TRACE ("Ut_short_divide");
dividend.full = *in_dividend;
/* Always check for a zero divisor */
if (divisor == 0) { REPORT_ERROR (("Acpi_ut_short_divide: Divide by zero\n")); return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO); }
/* * The quotient is 64 bits, the remainder is always 32 bits, * and is generated by the second divide. */ ACPI_DIV_64_BY_32 (0, dividend.part.hi, divisor, quotient.part.hi, remainder32); ACPI_DIV_64_BY_32 (remainder32, dividend.part.lo, divisor, quotient.part.lo, remainder32);
/* Return only what was requested */
if (out_quotient) { *out_quotient = quotient.full; } if (out_remainder) { *out_remainder = remainder32; }
return_ACPI_STATUS (AE_OK); }
/******************************************************************************* * * FUNCTION: Acpi_ut_divide * * PARAMETERS: In_dividend - Pointer to the dividend * In_divisor - Pointer to the divisor * Out_quotient - Pointer to where the quotient is returned * Out_remainder - Pointer to where the remainder is returned * * RETURN: Status (Checks for divide-by-zero) * * DESCRIPTION: Perform a divide and modulo. * ******************************************************************************/
acpi_status acpi_ut_divide ( acpi_integer *in_dividend, acpi_integer *in_divisor, acpi_integer *out_quotient, acpi_integer *out_remainder) { uint64_overlay dividend; uint64_overlay divisor; uint64_overlay quotient; uint64_overlay remainder; uint64_overlay normalized_dividend; uint64_overlay normalized_divisor; u32 partial1; uint64_overlay partial2; uint64_overlay partial3;
FUNCTION_TRACE ("Ut_divide");
/* Always check for a zero divisor */
if (*in_divisor == 0) { REPORT_ERROR (("Acpi_ut_divide: Divide by zero\n")); return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO); }
divisor.full = *in_divisor; dividend.full = *in_dividend; if (divisor.part.hi == 0) { /* * 1) Simplest case is where the divisor is 32 bits, we can * just do two divides */ remainder.part.hi = 0;
/* * The quotient is 64 bits, the remainder is always 32 bits, * and is generated by the second divide. */ ACPI_DIV_64_BY_32 (0, dividend.part.hi, divisor.part.lo, quotient.part.hi, partial1); ACPI_DIV_64_BY_32 (partial1, dividend.part.lo, divisor.part.lo, quotient.part.lo, remainder.part.lo); }
else { /* * 2) The general case where the divisor is a full 64 bits * is more difficult */ quotient.part.hi = 0; normalized_dividend = dividend; normalized_divisor = divisor;
/* Normalize the operands (shift until the divisor is < 32 bits) */
do { ACPI_SHIFT_RIGHT_64 (normalized_divisor.part.hi, normalized_divisor.part.lo); ACPI_SHIFT_RIGHT_64 (normalized_dividend.part.hi, normalized_dividend.part.lo);
} while (normalized_divisor.part.hi != 0);
/* Partial divide */
ACPI_DIV_64_BY_32 (normalized_dividend.part.hi, normalized_dividend.part.lo, normalized_divisor.part.lo, quotient.part.lo, partial1);
/* * The quotient is always 32 bits, and simply requires adjustment. * The 64-bit remainder must be generated. */ partial1 = quotient.part.lo * divisor.part.hi; partial2.full = (acpi_integer) quotient.part.lo * divisor.part.lo; partial3.full = partial2.part.hi + partial1;
remainder.part.hi = partial3.part.lo; remainder.part.lo = partial2.part.lo;
if (partial3.part.hi == 0) { if (partial3.part.lo >= dividend.part.hi) { if (partial3.part.lo == dividend.part.hi) { if (partial2.part.lo > dividend.part.lo) { quotient.part.lo--; remainder.full -= divisor.full; } } else { quotient.part.lo--; remainder.full -= divisor.full; } }
remainder.full = remainder.full - dividend.full; remainder.part.hi = -((s32) remainder.part.hi); remainder.part.lo = -((s32) remainder.part.lo);
if (remainder.part.lo) { remainder.part.hi--; } } }
/* Return only what was requested */
if (out_quotient) { *out_quotient = quotient.full; } if (out_remainder) { *out_remainder = remainder.full; }
return_ACPI_STATUS (AE_OK); }
#else
/******************************************************************************* * * FUNCTION: Acpi_ut_short_divide, Acpi_ut_divide * * DESCRIPTION: Native versions of the Ut_divide functions. Use these if either * 1) The target is a 64-bit platform and therefore 64-bit * integer math is supported directly by the machine. * 2) The target is a 32-bit or 16-bit platform, and the * double-precision integer math library is available to * perform the divide. * ******************************************************************************/
acpi_status acpi_ut_short_divide ( acpi_integer *in_dividend, u32 divisor, acpi_integer *out_quotient, u32 *out_remainder) {
FUNCTION_TRACE ("Ut_short_divide");
/* Always check for a zero divisor */
if (divisor == 0) { REPORT_ERROR (("Acpi_ut_short_divide: Divide by zero\n")); return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO); }
/* Return only what was requested */
if (out_quotient) { *out_quotient = *in_dividend / divisor; } if (out_remainder) { *out_remainder = (u32) *in_dividend % divisor; }
return_ACPI_STATUS (AE_OK); }
acpi_status acpi_ut_divide ( acpi_integer *in_dividend, acpi_integer *in_divisor, acpi_integer *out_quotient, acpi_integer *out_remainder) { FUNCTION_TRACE ("Ut_divide");
/* Always check for a zero divisor */
if (*in_divisor == 0) { REPORT_ERROR (("Acpi_ut_divide: Divide by zero\n")); return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO); }
/* Return only what was requested */
if (out_quotient) { *out_quotient = *in_dividend / *in_divisor; } if (out_remainder) { *out_remainder = *in_dividend % *in_divisor; }
return_ACPI_STATUS (AE_OK); }
#endif
|