Viewing file: pci_common.c (27.75 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: pci_common.c,v 1.27.2.2 2002/02/01 00:56:44 davem Exp $ * pci_common.c: PCI controller common support. * * Copyright (C) 1999 David S. Miller (davem@redhat.com) */
#include <linux/string.h> #include <linux/slab.h> #include <linux/init.h>
#include <asm/pbm.h>
/* Fix self device of BUS and hook it into BUS->self. * The pci_scan_bus does not do this for the host bridge. */ void __init pci_fixup_host_bridge_self(struct pci_bus *pbus) { struct list_head *walk = &pbus->devices;
walk = walk->next; while (walk != &pbus->devices) { struct pci_dev *pdev = pci_dev_b(walk);
if (pdev->class >> 8 == PCI_CLASS_BRIDGE_HOST) { pbus->self = pdev; return; }
walk = walk->next; }
prom_printf("PCI: Critical error, cannot find host bridge PDEV.\n"); prom_halt(); }
/* Find the OBP PROM device tree node for a PCI device. * Return zero if not found. */ static int __init find_device_prom_node(struct pci_pbm_info *pbm, struct pci_dev *pdev, int bus_prom_node, struct linux_prom_pci_registers *pregs, int *nregs) { int node;
/* * Return the PBM's PROM node in case we are it's PCI device, * as the PBM's reg property is different to standard PCI reg * properties. We would delete this device entry otherwise, * which confuses XFree86's device probing... */ if ((pdev->bus->number == pbm->pci_bus->number) && (pdev->devfn == 0) && (pdev->vendor == PCI_VENDOR_ID_SUN) && (pdev->device == PCI_DEVICE_ID_SUN_PBM || pdev->device == PCI_DEVICE_ID_SUN_SCHIZO || pdev->device == PCI_DEVICE_ID_SUN_SABRE || pdev->device == PCI_DEVICE_ID_SUN_HUMMINGBIRD)) { *nregs = 0; return bus_prom_node; }
node = prom_getchild(bus_prom_node); while (node != 0) { int err = prom_getproperty(node, "reg", (char *)pregs, sizeof(*pregs) * PROMREG_MAX); if (err == 0 || err == -1) goto do_next_sibling; if (((pregs[0].phys_hi >> 8) & 0xff) == pdev->devfn) { *nregs = err / sizeof(*pregs); return node; }
do_next_sibling: node = prom_getsibling(node); } return 0; }
/* Remove a PCI device from the device trees, then * free it up. Note that this must run before * the device's resources are registered because we * do not handle unregistering them here. */ static void pci_device_delete(struct pci_dev *pdev) { list_del(&pdev->global_list); list_del(&pdev->bus_list);
/* Ok, all references are gone, free it up. */ kfree(pdev); }
/* Older versions of OBP on PCI systems encode 64-bit MEM * space assignments incorrectly, this fixes them up. We also * take the opportunity here to hide other kinds of bogus * assignments. */ static void __init fixup_obp_assignments(struct pci_dev *pdev, struct pcidev_cookie *pcp) { int i;
if (pdev->vendor == PCI_VENDOR_ID_AL && (pdev->device == PCI_DEVICE_ID_AL_M7101 || pdev->device == PCI_DEVICE_ID_AL_M1533)) { int i;
/* Zap all of the normal resources, they are * meaningless and generate bogus resource collision * messages. This is OpenBoot's ill-fated attempt to * represent the implicit resources that these devices * have. */ pcp->num_prom_assignments = 0; for (i = 0; i < 6; i++) { pdev->resource[i].start = pdev->resource[i].end = pdev->resource[i].flags = 0; } pdev->resource[PCI_ROM_RESOURCE].start = pdev->resource[PCI_ROM_RESOURCE].end = pdev->resource[PCI_ROM_RESOURCE].flags = 0; return; }
for (i = 0; i < pcp->num_prom_assignments; i++) { struct linux_prom_pci_registers *ap; int space;
ap = &pcp->prom_assignments[i]; space = ap->phys_hi >> 24; if ((space & 0x3) == 2 && (space & 0x4) != 0) { ap->phys_hi &= ~(0x7 << 24); ap->phys_hi |= 0x3 << 24; } } }
/* Fill in the PCI device cookie sysdata for the given * PCI device. This cookie is the means by which one * can get to OBP and PCI controller specific information * for a PCI device. */ static void __init pdev_cookie_fillin(struct pci_pbm_info *pbm, struct pci_dev *pdev, int bus_prom_node) { struct linux_prom_pci_registers pregs[PROMREG_MAX]; struct pcidev_cookie *pcp; int device_prom_node, nregs, err;
device_prom_node = find_device_prom_node(pbm, pdev, bus_prom_node, pregs, &nregs); if (device_prom_node == 0) { /* If it is not in the OBP device tree then * there must be a damn good reason for it. * * So what we do is delete the device from the * PCI device tree completely. This scenerio * is seen, for example, on CP1500 for the * second EBUS/HappyMeal pair if the external * connector for it is not present. */ pci_device_delete(pdev); return; }
pcp = kmalloc(sizeof(*pcp), GFP_ATOMIC); if (pcp == NULL) { prom_printf("PCI_COOKIE: Fatal malloc error, aborting...\n"); prom_halt(); } pcp->pbm = pbm; pcp->prom_node = device_prom_node; memcpy(pcp->prom_regs, pregs, sizeof(pcp->prom_regs)); pcp->num_prom_regs = nregs; err = prom_getproperty(device_prom_node, "name", pcp->prom_name, sizeof(pcp->prom_name)); if (err > 0) pcp->prom_name[err] = 0; else pcp->prom_name[0] = 0;
err = prom_getproperty(device_prom_node, "assigned-addresses", (char *)pcp->prom_assignments, sizeof(pcp->prom_assignments)); if (err == 0 || err == -1) pcp->num_prom_assignments = 0; else pcp->num_prom_assignments = (err / sizeof(pcp->prom_assignments[0]));
if (strcmp(pcp->prom_name, "ebus") == 0) { struct linux_prom_ebus_ranges erng[PROM_PCIRNG_MAX]; int iter;
/* EBUS is special... */ err = prom_getproperty(device_prom_node, "ranges", (char *)&erng[0], sizeof(erng)); if (err == 0 || err == -1) { prom_printf("EBUS: Fatal error, no range property\n"); prom_halt(); } err = (err / sizeof(erng[0])); for(iter = 0; iter < err; iter++) { struct linux_prom_ebus_ranges *ep = &erng[iter]; struct linux_prom_pci_registers *ap;
ap = &pcp->prom_assignments[iter];
ap->phys_hi = ep->parent_phys_hi; ap->phys_mid = ep->parent_phys_mid; ap->phys_lo = ep->parent_phys_lo; ap->size_hi = 0; ap->size_lo = ep->size; } pcp->num_prom_assignments = err; }
fixup_obp_assignments(pdev, pcp);
pdev->sysdata = pcp; }
void __init pci_fill_in_pbm_cookies(struct pci_bus *pbus, struct pci_pbm_info *pbm, int prom_node) { struct list_head *walk = &pbus->devices;
/* This loop is coded like this because the cookie * fillin routine can delete devices from the tree. */ walk = walk->next; while (walk != &pbus->devices) { struct pci_dev *pdev = pci_dev_b(walk); struct list_head *walk_next = walk->next;
pdev_cookie_fillin(pbm, pdev, prom_node);
walk = walk_next; }
walk = &pbus->children; walk = walk->next; while (walk != &pbus->children) { struct pci_bus *this_pbus = pci_bus_b(walk); struct pcidev_cookie *pcp = this_pbus->self->sysdata; struct list_head *walk_next = walk->next;
pci_fill_in_pbm_cookies(this_pbus, pbm, pcp->prom_node);
walk = walk_next; } }
static void __init bad_assignment(struct pci_dev *pdev, struct linux_prom_pci_registers *ap, struct resource *res, int do_prom_halt) { prom_printf("PCI: Bogus PROM assignment. BUS[%02x] DEVFN[%x]\n", pdev->bus->number, pdev->devfn); if (ap) prom_printf("PCI: phys[%08x:%08x:%08x] size[%08x:%08x]\n", ap->phys_hi, ap->phys_mid, ap->phys_lo, ap->size_hi, ap->size_lo); if (res) prom_printf("PCI: RES[%016lx-->%016lx:(%lx)]\n", res->start, res->end, res->flags); prom_printf("Please email this information to davem@redhat.com\n"); if (do_prom_halt) prom_halt(); }
static struct resource * __init get_root_resource(struct linux_prom_pci_registers *ap, struct pci_pbm_info *pbm) { int space = (ap->phys_hi >> 24) & 3;
switch (space) { case 0: /* Configuration space, silently ignore it. */ return NULL;
case 1: /* 16-bit IO space */ return &pbm->io_space;
case 2: /* 32-bit MEM space */ return &pbm->mem_space;
case 3: /* 64-bit MEM space, these are allocated out of * the 32-bit mem_space range for the PBM, ie. * we just zero out the upper 32-bits. */ return &pbm->mem_space;
default: printk("PCI: What is resource space %x? " "Tell davem@redhat.com about it!\n", space); return NULL; }; }
static struct resource * __init get_device_resource(struct linux_prom_pci_registers *ap, struct pci_dev *pdev) { struct resource *res; int breg = (ap->phys_hi & 0xff); int space = (ap->phys_hi >> 24) & 3;
switch (breg) { case PCI_ROM_ADDRESS: /* It had better be MEM space. */ if (space != 2) bad_assignment(pdev, ap, NULL, 0);
res = &pdev->resource[PCI_ROM_RESOURCE]; break;
case PCI_BASE_ADDRESS_0: case PCI_BASE_ADDRESS_1: case PCI_BASE_ADDRESS_2: case PCI_BASE_ADDRESS_3: case PCI_BASE_ADDRESS_4: case PCI_BASE_ADDRESS_5: res = &pdev->resource[(breg - PCI_BASE_ADDRESS_0) / 4]; break;
default: bad_assignment(pdev, ap, NULL, 0); res = NULL; break; };
return res; }
static int __init pdev_resource_collisions_expected(struct pci_dev *pdev) { if (pdev->vendor != PCI_VENDOR_ID_SUN) return 0;
if (pdev->device == PCI_DEVICE_ID_SUN_RIO_EBUS || pdev->device == PCI_DEVICE_ID_SUN_RIO_1394 || pdev->device == PCI_DEVICE_ID_SUN_RIO_USB) return 1;
return 0; }
static void __init pdev_record_assignments(struct pci_pbm_info *pbm, struct pci_dev *pdev) { struct pcidev_cookie *pcp = pdev->sysdata; int i;
for (i = 0; i < pcp->num_prom_assignments; i++) { struct linux_prom_pci_registers *ap; struct resource *root, *res;
/* The format of this property is specified in * the PCI Bus Binding to IEEE1275-1994. */ ap = &pcp->prom_assignments[i]; root = get_root_resource(ap, pbm); res = get_device_resource(ap, pdev); if (root == NULL || res == NULL || res->flags == 0) continue;
/* Ok we know which resource this PROM assignment is * for, sanity check it. */ if ((res->start & 0xffffffffUL) != ap->phys_lo) bad_assignment(pdev, ap, res, 1);
/* If it is a 64-bit MEM space assignment, verify that * the resource is too and that the upper 32-bits match. */ if (((ap->phys_hi >> 24) & 3) == 3) { if (((res->flags & IORESOURCE_MEM) == 0) || ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) != PCI_BASE_ADDRESS_MEM_TYPE_64)) bad_assignment(pdev, ap, res, 1); if ((res->start >> 32) != ap->phys_mid) bad_assignment(pdev, ap, res, 1);
/* PBM cannot generate cpu initiated PIOs * to the full 64-bit space. Therefore the * upper 32-bits better be zero. If it is * not, just skip it and we will assign it * properly ourselves. */ if ((res->start >> 32) != 0UL) { printk(KERN_ERR "PCI: OBP assigns out of range MEM address " "%016lx for region %ld on device %s\n", res->start, (res - &pdev->resource[0]), pdev->name); continue; } }
/* Adjust the resource into the physical address space * of this PBM. */ pbm->parent->resource_adjust(pdev, res, root);
if (request_resource(root, res) < 0) { /* OK, there is some conflict. But this is fine * since we'll reassign it in the fixup pass. * * We notify the user that OBP made an error if it * is a case we don't expect. */ if (!pdev_resource_collisions_expected(pdev)) { printk(KERN_ERR "PCI: Address space collision on region %ld " "[%016lx:%016lx] of device %s\n", (res - &pdev->resource[0]), res->start, res->end, pdev->name); } } } }
void __init pci_record_assignments(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices;
for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_record_assignments(pbm, pci_dev_b(walk));
walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_record_assignments(pbm, pci_bus_b(walk)); }
/* Return non-zero if PDEV has implicit I/O resources even * though it may not have an I/O base address register * active. */ static int __init has_implicit_io(struct pci_dev *pdev) { int class = pdev->class >> 8;
if (class == PCI_CLASS_NOT_DEFINED || class == PCI_CLASS_NOT_DEFINED_VGA || class == PCI_CLASS_STORAGE_IDE || (pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) return 1;
return 0; }
static void __init pdev_assign_unassigned(struct pci_pbm_info *pbm, struct pci_dev *pdev) { u32 reg; u16 cmd; int i, io_seen, mem_seen;
io_seen = mem_seen = 0; for (i = 0; i < PCI_NUM_RESOURCES; i++) { struct resource *root, *res; unsigned long size, min, max, align;
res = &pdev->resource[i];
if (res->flags & IORESOURCE_IO) io_seen++; else if (res->flags & IORESOURCE_MEM) mem_seen++;
/* If it is already assigned or the resource does * not exist, there is nothing to do. */ if (res->parent != NULL || res->flags == 0UL) continue;
/* Determine the root we allocate from. */ if (res->flags & IORESOURCE_IO) { root = &pbm->io_space; min = root->start + 0x400UL; max = root->end; } else { root = &pbm->mem_space; min = root->start; max = min + 0x80000000UL; }
size = res->end - res->start; align = size + 1; if (allocate_resource(root, res, size + 1, min, max, align, NULL, NULL) < 0) { /* uh oh */ prom_printf("PCI: Failed to allocate resource %d for %s\n", i, pdev->name); prom_halt(); }
/* Update PCI config space. */ pbm->parent->base_address_update(pdev, i); }
/* Special case, disable the ROM. Several devices * act funny (ie. do not respond to memory space writes) * when it is left enabled. A good example are Qlogic,ISP * adapters. */ pci_read_config_dword(pdev, PCI_ROM_ADDRESS, ®); reg &= ~PCI_ROM_ADDRESS_ENABLE; pci_write_config_dword(pdev, PCI_ROM_ADDRESS, reg);
/* If we saw I/O or MEM resources, enable appropriate * bits in PCI command register. */ if (io_seen || mem_seen) { pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (io_seen || has_implicit_io(pdev)) cmd |= PCI_COMMAND_IO; if (mem_seen) cmd |= PCI_COMMAND_MEMORY; pci_write_config_word(pdev, PCI_COMMAND, cmd); }
/* If this is a PCI bridge or an IDE controller, * enable bus mastering. In the former case also * set the cache line size correctly. */ if (((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) || (((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) && ((pdev->class & 0x80) != 0))) { pci_read_config_word(pdev, PCI_COMMAND, &cmd); cmd |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, cmd);
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, (64 / sizeof(u32))); } }
void __init pci_assign_unassigned(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices;
for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_assign_unassigned(pbm, pci_dev_b(walk));
walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_assign_unassigned(pbm, pci_bus_b(walk)); }
static int __init pci_intmap_match(struct pci_dev *pdev, unsigned int *interrupt) { struct linux_prom_pci_intmap bridge_local_intmap[PROM_PCIIMAP_MAX], *intmap; struct linux_prom_pci_intmask bridge_local_intmask, *intmask; struct pcidev_cookie *dev_pcp = pdev->sysdata; struct pci_pbm_info *pbm = dev_pcp->pbm; struct linux_prom_pci_registers *pregs = dev_pcp->prom_regs; unsigned int hi, mid, lo, irq; int i, num_intmap;
if (pbm->num_pbm_intmap == 0) return 0;
intmap = &pbm->pbm_intmap[0]; intmask = &pbm->pbm_intmask; num_intmap = pbm->num_pbm_intmap;
/* If we are underneath a PCI bridge, use PROM register * property of the parent bridge which is closest to * the PBM. */ if (pdev->bus->number != pbm->pci_first_busno) { struct pcidev_cookie *bus_pcp; struct pci_dev *pwalk; int offset, plen;
pwalk = pdev->bus->self; while (pwalk->bus && pwalk->bus->number != pbm->pci_first_busno) pwalk = pwalk->bus->self;
bus_pcp = pwalk->sysdata;
/* But if the PCI bridge has it's own interrupt map * and mask properties, use that and the device regs. */ plen = prom_getproperty(bus_pcp->prom_node, "interrupt-map", (char *) &bridge_local_intmap[0], sizeof(bridge_local_intmap)); if (plen != -1) { intmap = &bridge_local_intmap[0]; num_intmap = plen / sizeof(struct linux_prom_pci_intmap); plen = prom_getproperty(bus_pcp->prom_node, "interrupt-map-mask", (char *) &bridge_local_intmask, sizeof(bridge_local_intmask)); if (plen == -1) { prom_printf("pbm_intmap_match: Bridge has intmap but " "no intmask.\n"); prom_halt(); } goto check_intmap; }
pregs = bus_pcp->prom_regs;
offset = prom_getint(dev_pcp->prom_node, "fcode-rom-offset");
/* Did PROM know better and assign an interrupt other * than #INTA to the device? - We test here for presence of * FCODE on the card, in this case we assume PROM has set * correct 'interrupts' property, unless it is quadhme. */ if (offset == -1 || !strcmp(dev_pcp->prom_name, "SUNW,qfe") || !strcmp(dev_pcp->prom_name, "qfe")) { /* * No, use low slot number bits of child as IRQ line. */ *interrupt = ((*interrupt - 1 + PCI_SLOT(pdev->devfn)) & 3) + 1; } }
check_intmap: hi = pregs->phys_hi & intmask->phys_hi; mid = pregs->phys_mid & intmask->phys_mid; lo = pregs->phys_lo & intmask->phys_lo; irq = *interrupt & intmask->interrupt;
for (i = 0; i < num_intmap; i++) { if (intmap[i].phys_hi == hi && intmap[i].phys_mid == mid && intmap[i].phys_lo == lo && intmap[i].interrupt == irq) { *interrupt = intmap[i].cinterrupt; return 1; } }
prom_printf("pbm_intmap_match: bus %02x, devfn %02x: ", pdev->bus->number, pdev->devfn); prom_printf("IRQ [%08x.%08x.%08x.%08x] not found in interrupt-map\n", pregs->phys_hi, pregs->phys_mid, pregs->phys_lo, *interrupt); prom_printf("Please email this information to davem@redhat.com\n"); prom_halt(); }
static void __init pdev_fixup_irq(struct pci_dev *pdev) { struct pcidev_cookie *pcp = pdev->sysdata; struct pci_pbm_info *pbm = pcp->pbm; struct pci_controller_info *p = pbm->parent; unsigned int portid = p->portid; unsigned int prom_irq; int prom_node = pcp->prom_node; int err;
/* If this is an empty EBUS device, sometimes OBP fails to * give it a valid fully specified interrupts property. * The EBUS hooked up to SunHME on PCI I/O boards of * Ex000 systems is one such case. * * The interrupt is not important so just ignore it. */ if (pdev->vendor == PCI_VENDOR_ID_SUN && pdev->device == PCI_DEVICE_ID_SUN_EBUS && !prom_getchild(prom_node)) { pdev->irq = 0; return; }
err = prom_getproperty(prom_node, "interrupts", (char *)&prom_irq, sizeof(prom_irq)); if (err == 0 || err == -1) { pdev->irq = 0; return; }
/* Fully specified already? */ if (((prom_irq & PCI_IRQ_IGN) >> 6) == portid) { pdev->irq = p->irq_build(pbm, pdev, prom_irq); goto have_irq; }
/* An onboard device? (bit 5 set) */ if ((prom_irq & PCI_IRQ_INO) & 0x20) { pdev->irq = p->irq_build(pbm, pdev, (portid << 6 | prom_irq)); goto have_irq; }
/* Can we find a matching entry in the interrupt-map? */ if (pci_intmap_match(pdev, &prom_irq)) { pdev->irq = p->irq_build(pbm, pdev, (portid << 6) | prom_irq); goto have_irq; }
/* Ok, we have to do it the hard way. */ { unsigned int bus, slot, line;
bus = (pbm == &pbm->parent->pbm_B) ? (1 << 4) : 0;
/* If we have a legal interrupt property, use it as * the IRQ line. */ if (prom_irq > 0 && prom_irq < 5) { line = ((prom_irq - 1) & 3); } else { u8 pci_irq_line;
/* Else just directly consult PCI config space. */ pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pci_irq_line); line = ((pci_irq_line - 1) & 3); }
/* Now figure out the slot. * * Basically, device number zero on the top-level bus is * always the PCI host controller. Slot 0 is then device 1. * PBM A supports two external slots (0 and 1), and PBM B * supports 4 external slots (0, 1, 2, and 3). On-board PCI * devices are wired to device numbers outside of these * ranges. -DaveM */ if (pdev->bus->number == pbm->pci_first_busno) { slot = (pdev->devfn >> 3) - pbm->pci_first_slot; } else { /* Underneath a bridge, use slot number of parent * bridge. */ slot = (pdev->bus->self->devfn >> 3) - pbm->pci_first_slot; } slot = slot << 2;
pdev->irq = p->irq_build(pbm, pdev, ((portid << 6) & PCI_IRQ_IGN) | (bus | slot | line)); }
have_irq: pci_write_config_byte(pdev, PCI_INTERRUPT_LINE, pdev->irq & PCI_IRQ_INO); }
void __init pci_fixup_irq(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices;
for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_fixup_irq(pci_dev_b(walk));
walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_fixup_irq(pbm, pci_bus_b(walk)); }
static void pdev_setup_busmastering(struct pci_dev *pdev, int is_66mhz) { u16 cmd; u8 hdr_type, min_gnt, ltimer;
pci_read_config_word(pdev, PCI_COMMAND, &cmd); cmd |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, cmd);
/* Read it back, if the mastering bit did not * get set, the device does not support bus * mastering so we have nothing to do here. */ pci_read_config_word(pdev, PCI_COMMAND, &cmd); if ((cmd & PCI_COMMAND_MASTER) == 0) return;
/* Set correct cache line size, 64-byte on all * Sparc64 PCI systems. Note that the value is * measured in 32-bit words. */ pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 64 / sizeof(u32));
pci_read_config_byte(pdev, PCI_HEADER_TYPE, &hdr_type); hdr_type &= ~0x80; if (hdr_type != PCI_HEADER_TYPE_NORMAL) return;
/* If the latency timer is already programmed with a non-zero * value, assume whoever set it (OBP or whoever) knows what * they are doing. */ pci_read_config_byte(pdev, PCI_LATENCY_TIMER, <imer); if (ltimer != 0) return;
/* XXX Since I'm tipping off the min grant value to * XXX choose a suitable latency timer value, I also * XXX considered making use of the max latency value * XXX as well. Unfortunately I've seen too many bogusly * XXX low settings for it to the point where it lacks * XXX any usefulness. In one case, an ethernet card * XXX claimed a min grant of 10 and a max latency of 5. * XXX Now, if I had two such cards on the same bus I * XXX could not set the desired burst period (calculated * XXX from min grant) without violating the max latency * XXX bound. Duh... * XXX * XXX I blame dumb PC bios implementors for stuff like * XXX this, most of them don't even try to do something * XXX sensible with latency timer values and just set some * XXX default value (usually 32) into every device. */
pci_read_config_byte(pdev, PCI_MIN_GNT, &min_gnt);
if (min_gnt == 0) { /* If no min_gnt setting then use a default * value. */ if (is_66mhz) ltimer = 16; else ltimer = 32; } else { int shift_factor;
if (is_66mhz) shift_factor = 2; else shift_factor = 3;
/* Use a default value when the min_gnt value * is erroneously high. */ if (((unsigned int) min_gnt << shift_factor) > 512 || ((min_gnt << shift_factor) & 0xff) == 0) { ltimer = 8 << shift_factor; } else { ltimer = min_gnt << shift_factor; } }
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ltimer); }
void pci_determine_66mhz_disposition(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk; int all_are_66mhz; u16 status;
if (pbm->is_66mhz_capable == 0) { all_are_66mhz = 0; goto out; }
walk = &pbus->devices; all_are_66mhz = 1; for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk);
pci_read_config_word(pdev, PCI_STATUS, &status); if (!(status & PCI_STATUS_66MHZ)) { all_are_66mhz = 0; break; } } out: pbm->all_devs_66mhz = all_are_66mhz;
printk("PCI%d(PBM%c): Bus running at %dMHz\n", pbm->parent->index, (pbm == &pbm->parent->pbm_A) ? 'A' : 'B', (all_are_66mhz ? 66 : 33)); }
void pci_setup_busmastering(struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices; int is_66mhz;
is_66mhz = pbm->is_66mhz_capable && pbm->all_devs_66mhz;
for (walk = walk->next; walk != &pbus->devices; walk = walk->next) pdev_setup_busmastering(pci_dev_b(walk), is_66mhz);
walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_setup_busmastering(pbm, pci_bus_b(walk)); }
void pci_register_legacy_regions(struct resource *io_res, struct resource *mem_res) { struct resource *p;
/* VGA Video RAM. */ p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return;
memset(p, 0, sizeof(*p)); p->name = "Video RAM area"; p->start = mem_res->start + 0xa0000UL; p->end = p->start + 0x1ffffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p);
p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return;
memset(p, 0, sizeof(*p)); p->name = "System ROM"; p->start = mem_res->start + 0xf0000UL; p->end = p->start + 0xffffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p);
p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return;
memset(p, 0, sizeof(*p)); p->name = "Video ROM"; p->start = mem_res->start + 0xc0000UL; p->end = p->start + 0x7fffUL; p->flags = IORESOURCE_BUSY; request_resource(mem_res, p); }
/* Generic helper routines for PCI error reporting. */ void pci_scan_for_target_abort(struct pci_controller_info *p, struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices;
for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); u16 status, error_bits;
pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("PCI%d(PBM%c): Device [%s] saw Target Abort [%016x]\n", p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), pdev->name, status); } }
walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_scan_for_target_abort(p, pbm, pci_bus_b(walk)); }
void pci_scan_for_master_abort(struct pci_controller_info *p, struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices;
for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); u16 status, error_bits;
pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_REC_MASTER_ABORT)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("PCI%d(PBM%c): Device [%s] received Master Abort [%016x]\n", p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), pdev->name, status); } }
walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_scan_for_master_abort(p, pbm, pci_bus_b(walk)); }
void pci_scan_for_parity_error(struct pci_controller_info *p, struct pci_pbm_info *pbm, struct pci_bus *pbus) { struct list_head *walk = &pbus->devices;
for (walk = walk->next; walk != &pbus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); u16 status, error_bits;
pci_read_config_word(pdev, PCI_STATUS, &status); error_bits = (status & (PCI_STATUS_PARITY | PCI_STATUS_DETECTED_PARITY)); if (error_bits) { pci_write_config_word(pdev, PCI_STATUS, error_bits); printk("PCI%d(PBM%c): Device [%s] saw Parity Error [%016x]\n", p->index, ((pbm == &p->pbm_A) ? 'A' : 'B'), pdev->name, status); } }
walk = &pbus->children; for (walk = walk->next; walk != &pbus->children; walk = walk->next) pci_scan_for_parity_error(p, pbm, pci_bus_b(walk)); }
|