!C99Shell v. 1.0 pre-release build #13!

Software: Apache/2.0.54 (Unix) mod_perl/1.99_09 Perl/v5.8.0 mod_ssl/2.0.54 OpenSSL/0.9.7l DAV/2 FrontPage/5.0.2.2635 PHP/4.4.0 mod_gzip/2.0.26.1a 

uname -a: Linux snow.he.net 4.4.276-v2-mono-1 #1 SMP Wed Jul 21 11:21:17 PDT 2021 i686 

uid=99(nobody) gid=98(nobody) groups=98(nobody) 

Safe-mode: OFF (not secure)

/usr/src/linux-2.4.18-xfs-1.1/arch/sparc/kernel/   drwxr-xr-x
Free 318.34 GB of 458.09 GB (69.49%)
Home    Back    Forward    UPDIR    Refresh    Search    Buffer    Encoder    Tools    Proc.    FTP brute    Sec.    SQL    PHP-code    Update    Feedback    Self remove    Logout    


Viewing file:     sun4m_smp.c (12.13 KB)      -rw-r--r--
Select action/file-type:
(+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* sun4m_smp.c: Sparc SUN4M SMP support.
 *
 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
 */

#include <asm/head.h>

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/mm.h>

#include <asm/ptrace.h>
#include <asm/atomic.h>

#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/hardirq.h>
#include <asm/softirq.h>

#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>

#define IRQ_RESCHEDULE        13
#define IRQ_STOP_CPU        14
#define IRQ_CROSS_CALL        15

extern ctxd_t *srmmu_ctx_table_phys;
extern int linux_num_cpus;

extern void calibrate_delay(void);

extern struct task_struct *current_set[NR_CPUS];
extern volatile int smp_processors_ready;
extern unsigned long cpu_present_map;
extern int smp_num_cpus;
extern int smp_threads_ready;
extern unsigned char mid_xlate[NR_CPUS];
extern volatile unsigned long cpu_callin_map[NR_CPUS];
extern unsigned long smp_proc_in_lock[NR_CPUS];
extern struct cpuinfo_sparc cpu_data[NR_CPUS];
extern unsigned long cpu_offset[NR_CPUS];
extern unsigned char boot_cpu_id;
extern int smp_activated;
extern volatile int __cpu_number_map[NR_CPUS];
extern volatile int __cpu_logical_map[NR_CPUS];
extern volatile unsigned long ipi_count;
extern volatile int smp_process_available;
extern volatile int smp_commenced;
extern int __smp4m_processor_id(void);

extern unsigned long totalram_pages;

/*#define SMP_DEBUG*/

#ifdef SMP_DEBUG
#define SMP_PRINTK(x)    printk x
#else
#define SMP_PRINTK(x)
#endif

static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val)
{
    __asm__ __volatile__("swap [%1], %0\n\t" :
                 "=&r" (val), "=&r" (ptr) :
                 "0" (val), "1" (ptr));
    return val;
}

static void smp_setup_percpu_timer(void);
extern void cpu_probe(void);

void __init smp4m_callin(void)
{
    int cpuid = hard_smp_processor_id();

    local_flush_cache_all();
    local_flush_tlb_all();

    set_irq_udt(mid_xlate[boot_cpu_id]);

    /* Get our local ticker going. */
    smp_setup_percpu_timer();

    calibrate_delay();
    smp_store_cpu_info(cpuid);

    local_flush_cache_all();
    local_flush_tlb_all();

    /*
     * Unblock the master CPU _only_ when the scheduler state
     * of all secondary CPUs will be up-to-date, so after
     * the SMP initialization the master will be just allowed
     * to call the scheduler code.
     */
    init_idle();

    /* Allow master to continue. */
    swap((unsigned long *)&cpu_callin_map[cpuid], 1);

    local_flush_cache_all();
    local_flush_tlb_all();
    
    cpu_probe();

    /* Fix idle thread fields. */
    __asm__ __volatile__("ld [%0], %%g6\n\t"
                 : : "r" (&current_set[cpuid])
                 : "memory" /* paranoid */);

    /* Attach to the address space of init_task. */
    atomic_inc(&init_mm.mm_count);
    current->active_mm = &init_mm;

    while(!smp_commenced)
        barrier();

    local_flush_cache_all();
    local_flush_tlb_all();

    __sti();
}

extern int cpu_idle(void *unused);
extern void init_IRQ(void);
extern void cpu_panic(void);
extern int start_secondary(void *unused);

/*
 *    Cycle through the processors asking the PROM to start each one.
 */
 
extern struct prom_cpuinfo linux_cpus[NR_CPUS];
extern struct linux_prom_registers smp_penguin_ctable;
extern unsigned long trapbase_cpu1[];
extern unsigned long trapbase_cpu2[];
extern unsigned long trapbase_cpu3[];

void __init smp4m_boot_cpus(void)
{
    int cpucount = 0;
    int i = 0;
    int first, prev;

    printk("Entering SMP Mode...\n");

    __sti();
    cpu_present_map = 0;

    for(i=0; i < linux_num_cpus; i++)
        cpu_present_map |= (1<<i);

    for(i=0; i < NR_CPUS; i++) {
        cpu_offset[i] = (char *)&cpu_data[i] - (char *)&cpu_data;
        __cpu_number_map[i] = -1;
        __cpu_logical_map[i] = -1;
    }

    mid_xlate[boot_cpu_id] = (linux_cpus[boot_cpu_id].mid & ~8);
    __cpu_number_map[boot_cpu_id] = 0;
    __cpu_logical_map[0] = boot_cpu_id;
    current->processor = boot_cpu_id;

    smp_store_cpu_info(boot_cpu_id);
    set_irq_udt(mid_xlate[boot_cpu_id]);
    smp_setup_percpu_timer();
    init_idle();
    local_flush_cache_all();
    if(linux_num_cpus == 1)
        return;  /* Not an MP box. */
    for(i = 0; i < NR_CPUS; i++) {
        if(i == boot_cpu_id)
            continue;

        if(cpu_present_map & (1 << i)) {
            extern unsigned long sun4m_cpu_startup;
            unsigned long *entry = &sun4m_cpu_startup;
            struct task_struct *p;
            int timeout;

            /* Cook up an idler for this guy. */
            kernel_thread(start_secondary, NULL, CLONE_PID);

            cpucount++;

            p = init_task.prev_task;
            init_tasks[i] = p;

            p->processor = i;
            p->cpus_runnable = 1 << i; /* we schedule the first task manually */

            current_set[i] = p;

            del_from_runqueue(p);
            unhash_process(p);

            /* See trampoline.S for details... */
            entry += ((i-1) * 3);

            /*
             * Initialize the contexts table
             * Since the call to prom_startcpu() trashes the structure,
             * we need to re-initialize it for each cpu
             */
            smp_penguin_ctable.which_io = 0;
            smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
            smp_penguin_ctable.reg_size = 0;

            /* whirrr, whirrr, whirrrrrrrrr... */
            printk("Starting CPU %d at %p\n", i, entry);
            mid_xlate[i] = (linux_cpus[i].mid & ~8);
            local_flush_cache_all();
            prom_startcpu(linux_cpus[i].prom_node,
                      &smp_penguin_ctable, 0, (char *)entry);

            /* wheee... it's going... */
            for(timeout = 0; timeout < 10000; timeout++) {
                if(cpu_callin_map[i])
                    break;
                udelay(200);
            }
            if(cpu_callin_map[i]) {
                /* Another "Red Snapper". */
                __cpu_number_map[i] = i;
                __cpu_logical_map[i] = i;
            } else {
                cpucount--;
                printk("Processor %d is stuck.\n", i);
            }
        }
        if(!(cpu_callin_map[i])) {
            cpu_present_map &= ~(1 << i);
            __cpu_number_map[i] = -1;
        }
    }
    local_flush_cache_all();
    if(cpucount == 0) {
        printk("Error: only one Processor found.\n");
        cpu_present_map = (1 << smp_processor_id());
    } else {
        unsigned long bogosum = 0;
        for(i = 0; i < NR_CPUS; i++) {
            if(cpu_present_map & (1 << i))
                bogosum += cpu_data[i].udelay_val;
        }
        printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n",
               cpucount + 1,
               bogosum/(500000/HZ),
               (bogosum/(5000/HZ))%100);
        smp_activated = 1;
        smp_num_cpus = cpucount + 1;
    }

    /* Setup CPU list for IRQ distribution scheme. */
    first = prev = -1;
    for(i = 0; i < NR_CPUS; i++) {
        if(cpu_present_map & (1 << i)) {
            if(first == -1)
                first = i;
            if(prev != -1)
                cpu_data[prev].next = i;
            cpu_data[i].mid = mid_xlate[i];
            prev = i;
        }
    }
    cpu_data[prev].next = first;
    
    /* Free unneeded trap tables */
    if (!(cpu_present_map & (1 << 1))) {
        ClearPageReserved(virt_to_page(trapbase_cpu1));
        set_page_count(virt_to_page(trapbase_cpu1), 1);
        free_page((unsigned long)trapbase_cpu1);
        totalram_pages++;
        num_physpages++;
    }
    if (!(cpu_present_map & (1 << 2))) {
        ClearPageReserved(virt_to_page(trapbase_cpu2));
        set_page_count(virt_to_page(trapbase_cpu2), 1);
        free_page((unsigned long)trapbase_cpu2);
        totalram_pages++;
        num_physpages++;
    }
    if (!(cpu_present_map & (1 << 3))) {
        ClearPageReserved(virt_to_page(trapbase_cpu3));
        set_page_count(virt_to_page(trapbase_cpu3), 1);
        free_page((unsigned long)trapbase_cpu3);
        totalram_pages++;
        num_physpages++;
    }

    /* Ok, they are spinning and ready to go. */
    smp_processors_ready = 1;
}

/* At each hardware IRQ, we get this called to forward IRQ reception
 * to the next processor.  The caller must disable the IRQ level being
 * serviced globally so that there are no double interrupts received.
 */
void smp4m_irq_rotate(int cpu)
{
    if(smp_processors_ready)
        set_irq_udt(cpu_data[cpu_data[cpu].next].mid);
}

/* Cross calls, in order to work efficiently and atomically do all
 * the message passing work themselves, only stopcpu and reschedule
 * messages come through here.
 */
void smp4m_message_pass(int target, int msg, unsigned long data, int wait)
{
    static unsigned long smp_cpu_in_msg[NR_CPUS];
    unsigned long mask;
    int me = smp_processor_id();
    int irq, i;

    if(msg == MSG_RESCHEDULE) {
        irq = IRQ_RESCHEDULE;

        if(smp_cpu_in_msg[me])
            return;
    } else if(msg == MSG_STOP_CPU) {
        irq = IRQ_STOP_CPU;
    } else {
        goto barf;
    }

    smp_cpu_in_msg[me]++;
    if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) {
        mask = cpu_present_map;
        if(target == MSG_ALL_BUT_SELF)
            mask &= ~(1 << me);
        for(i = 0; i < 4; i++) {
            if(mask & (1 << i))
                set_cpu_int(mid_xlate[i], irq);
        }
    } else {
        set_cpu_int(mid_xlate[target], irq);
    }
    smp_cpu_in_msg[me]--;

    return;
barf:
    printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me);
    panic("Bogon SMP message pass.");
}

static struct smp_funcall {
    smpfunc_t func;
    unsigned long arg1;
    unsigned long arg2;
    unsigned long arg3;
    unsigned long arg4;
    unsigned long arg5;
    unsigned long processors_in[NR_CPUS];  /* Set when ipi entered. */
    unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */
} ccall_info;

static spinlock_t cross_call_lock = SPIN_LOCK_UNLOCKED;

/* Cross calls must be serialized, at least currently. */
void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2,
            unsigned long arg3, unsigned long arg4, unsigned long arg5)
{
    if(smp_processors_ready) {
        register int ncpus = smp_num_cpus;
        unsigned long flags;

        spin_lock_irqsave(&cross_call_lock, flags);

        /* Init function glue. */
        ccall_info.func = func;
        ccall_info.arg1 = arg1;
        ccall_info.arg2 = arg2;
        ccall_info.arg3 = arg3;
        ccall_info.arg4 = arg4;
        ccall_info.arg5 = arg5;

        /* Init receive/complete mapping, plus fire the IPI's off. */
        {
            register unsigned long mask;
            register int i;

            mask = (cpu_present_map & ~(1 << smp_processor_id()));
            for(i = 0; i < ncpus; i++) {
                if(mask & (1 << i)) {
                    ccall_info.processors_in[i] = 0;
                    ccall_info.processors_out[i] = 0;
                    set_cpu_int(mid_xlate[i], IRQ_CROSS_CALL);
                } else {
                    ccall_info.processors_in[i] = 1;
                    ccall_info.processors_out[i] = 1;
                }
            }
        }

        {
            register int i;

            i = 0;
            do {
                while(!ccall_info.processors_in[i])
                    barrier();
            } while(++i < ncpus);

            i = 0;
            do {
                while(!ccall_info.processors_out[i])
                    barrier();
            } while(++i < ncpus);
        }

        spin_unlock_irqrestore(&cross_call_lock, flags);
    }
}

/* Running cross calls. */
void smp4m_cross_call_irq(void)
{
    int i = smp_processor_id();

    ccall_info.processors_in[i] = 1;
    ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
            ccall_info.arg4, ccall_info.arg5);
    ccall_info.processors_out[i] = 1;
}

extern unsigned int prof_multiplier[NR_CPUS];
extern unsigned int prof_counter[NR_CPUS];

extern void sparc_do_profile(unsigned long pc, unsigned long o7);

void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
{
    int cpu = smp_processor_id();

    clear_profile_irq(mid_xlate[cpu]);

    if(!user_mode(regs))
        sparc_do_profile(regs->pc, regs->u_regs[UREG_RETPC]);

    if(!--prof_counter[cpu]) {
        int user = user_mode(regs);

        irq_enter(cpu, 0);
        update_process_times(user);
        irq_exit(cpu, 0);

        prof_counter[cpu] = prof_multiplier[cpu];
    }
}

extern unsigned int lvl14_resolution;

static void __init smp_setup_percpu_timer(void)
{
    int cpu = smp_processor_id();

    prof_counter[cpu] = prof_multiplier[cpu] = 1;
    load_profile_irq(mid_xlate[cpu], lvl14_resolution);

    if(cpu == boot_cpu_id)
        enable_pil_irq(14);
}

void __init smp4m_blackbox_id(unsigned *addr)
{
    int rd = *addr & 0x3e000000;
    int rs1 = rd >> 11;
    
    addr[0] = 0x81580000 | rd;        /* rd %tbr, reg */
    addr[1] = 0x8130200c | rd | rs1;        /* srl reg, 0xc, reg */
    addr[2] = 0x80082003 | rd | rs1;    /* and reg, 3, reg */
}

void __init smp4m_blackbox_current(unsigned *addr)
{
    int rd = *addr & 0x3e000000;
    int rs1 = rd >> 11;
    
    addr[0] = 0x81580000 | rd;        /* rd %tbr, reg */
    addr[2] = 0x8130200a | rd | rs1;        /* srl reg, 0xa, reg */
    addr[4] = 0x8008200c | rd | rs1;    /* and reg, 3, reg */
}

void __init sun4m_init_smp(void)
{
    BTFIXUPSET_BLACKBOX(smp_processor_id, smp4m_blackbox_id);
    BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current);
    BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM);
    BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM);
    BTFIXUPSET_CALL(__smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM);
}

:: Command execute ::

Enter:
 
Select:
 

:: Search ::
  - regexp 

:: Upload ::
 
[ Read-Only ]

:: Make Dir ::
 
[ Read-Only ]
:: Make File ::
 
[ Read-Only ]

:: Go Dir ::
 
:: Go File ::
 

--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0248 ]--