Viewing file: fault.c (9.77 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: fault.c,v 1.49 2001/10/06 19:46:00 lethal Exp $ * * linux/arch/sh/mm/fault.c * Copyright (C) 1999 Niibe Yutaka * * Based on linux/arch/i386/mm/fault.c: * Copyright (C) 1995 Linus Torvalds */
#include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/interrupt.h>
#include <asm/system.h> #include <asm/io.h> #include <asm/uaccess.h> #include <asm/pgalloc.h> #include <asm/hardirq.h> #include <asm/mmu_context.h>
extern void die(const char *,struct pt_regs *,long);
/* * Ugly, ugly, but the goto's result in better assembly.. */ int __verify_write(const void * addr, unsigned long size) { struct vm_area_struct * vma; unsigned long start = (unsigned long) addr;
if (!size) return 1;
vma = find_vma(current->mm, start); if (!vma) goto bad_area; if (vma->vm_start > start) goto check_stack;
good_area: if (!(vma->vm_flags & VM_WRITE)) goto bad_area; size--; size += start & ~PAGE_MASK; size >>= PAGE_SHIFT; start &= PAGE_MASK;
for (;;) { if (handle_mm_fault(current->mm, vma, start, 1) <= 0) goto bad_area; if (!size) break; size--; start += PAGE_SIZE; if (start < vma->vm_end) continue; vma = vma->vm_next; if (!vma || vma->vm_start != start) goto bad_area; if (!(vma->vm_flags & VM_WRITE)) goto bad_area;; } return 1;
check_stack: if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, start) == 0) goto good_area;
bad_area: return 0; }
/* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long writeaccess, unsigned long address) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; unsigned long page; unsigned long fixup;
tsk = current; mm = tsk->mm;
/* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_interrupt() || !mm) goto no_context;
down_read(&mm->mmap_sem);
vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: if (writeaccess) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_EXEC))) goto bad_area; }
/* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ survive: switch (handle_mm_fault(mm, vma, address, writeaccess)) { case 1: tsk->min_flt++; break; case 2: tsk->maj_flt++; break; case 0: goto do_sigbus; default: goto out_of_memory; }
up_read(&mm->mmap_sem); return;
/* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem);
if (user_mode(regs)) { tsk->thread.address = address; tsk->thread.error_code = writeaccess; force_sig(SIGSEGV, tsk); return; }
no_context: /* Are we prepared to handle this kernel fault? */ fixup = search_exception_table(regs->pc); if (fixup != 0) { regs->pc = fixup; return; }
/* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. * */ if (address < PAGE_SIZE) printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference"); else printk(KERN_ALERT "Unable to handle kernel paging request"); printk(" at virtual address %08lx\n", address); printk(KERN_ALERT "pc = %08lx\n", regs->pc); asm volatile("mov.l %1, %0" : "=r" (page) : "m" (__m(MMU_TTB))); if (page) { page = ((unsigned long *) page)[address >> 22]; printk(KERN_ALERT "*pde = %08lx\n", page); if (page & _PAGE_PRESENT) { page &= PAGE_MASK; address &= 0x003ff000; page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT]; printk(KERN_ALERT "*pte = %08lx\n", page); } } die("Oops", regs, writeaccess); do_exit(SIGKILL);
/* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (current->pid == 1) { current->policy |= SCHED_YIELD; schedule(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", tsk->comm); if (user_mode(regs)) do_exit(SIGKILL); goto no_context;
do_sigbus: up_read(&mm->mmap_sem);
/* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ tsk->thread.address = address; tsk->thread.error_code = writeaccess; tsk->thread.trap_no = 14; force_sig(SIGBUS, tsk);
/* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; }
/* * Called with interrupt disabled. */ asmlinkage int __do_page_fault(struct pt_regs *regs, unsigned long writeaccess, unsigned long address) { pgd_t *dir; pmd_t *pmd; pte_t *pte; pte_t entry;
if (address >= P3SEG && address < P4SEG) dir = pgd_offset_k(address); else if (address >= TASK_SIZE) return 1; else dir = pgd_offset(current->mm, address);
pmd = pmd_offset(dir, address); if (pmd_none(*pmd)) return 1; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); return 1; } pte = pte_offset(pmd, address); entry = *pte; if (pte_none(entry) || pte_not_present(entry) || (writeaccess && !pte_write(entry))) return 1;
if (writeaccess) entry = pte_mkdirty(entry); entry = pte_mkyoung(entry); #if defined(__SH4__) /* * ITLB is not affected by "ldtlb" instruction. * So, we need to flush the entry by ourselves. */ __flush_tlb_page(get_asid(), address&PAGE_MASK); #endif set_pte(pte, entry); update_mmu_cache(NULL, address, entry); return 0; }
void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { unsigned long flags; unsigned long pteval; unsigned long vpn; #if defined(__SH4__) struct page *page; unsigned long ptea; #endif
/* Ptrace may call this routine. */ if (vma && current->active_mm != vma->vm_mm) return;
#if defined(__SH4__) page = pte_page(pte); if (VALID_PAGE(page) && !test_bit(PG_mapped, &page->flags)) { unsigned long phys = pte_val(pte) & PTE_PHYS_MASK; __flush_wback_region((void *)P1SEGADDR(phys), PAGE_SIZE); __set_bit(PG_mapped, &page->flags); } #endif
save_and_cli(flags);
/* Set PTEH register */ vpn = (address & MMU_VPN_MASK) | get_asid(); ctrl_outl(vpn, MMU_PTEH);
pteval = pte_val(pte); #if defined(__SH4__) /* Set PTEA register */ /* TODO: make this look less hacky */ ptea = ((pteval >> 28) & 0xe) | (pteval & 0x1); ctrl_outl(ptea, MMU_PTEA); #endif
/* Set PTEL register */ pteval &= _PAGE_FLAGS_HARDWARE_MASK; /* drop software flags */ /* conveniently, we want all the software flags to be 0 anyway */ ctrl_outl(pteval, MMU_PTEL);
/* Load the TLB */ asm volatile("ldtlb": /* no output */ : /* no input */ : "memory"); restore_flags(flags); }
void __flush_tlb_page(unsigned long asid, unsigned long page) { unsigned long addr, data;
/* * NOTE: PTEH.ASID should be set to this MM * _AND_ we need to write ASID to the array. * * It would be simple if we didn't need to set PTEH.ASID... */ #if defined(__sh3__) addr = MMU_TLB_ADDRESS_ARRAY |(page & 0x1F000)| MMU_PAGE_ASSOC_BIT; data = (page & 0xfffe0000) | asid; /* VALID bit is off */ ctrl_outl(data, addr); #elif defined(__SH4__) addr = MMU_UTLB_ADDRESS_ARRAY | MMU_PAGE_ASSOC_BIT; data = page | asid; /* VALID bit is off */ jump_to_P2(); ctrl_outl(data, addr); back_to_P1(); #endif }
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if (vma->vm_mm && vma->vm_mm->context != NO_CONTEXT) { unsigned long flags; unsigned long asid; unsigned long saved_asid = MMU_NO_ASID;
asid = vma->vm_mm->context & MMU_CONTEXT_ASID_MASK; page &= PAGE_MASK;
save_and_cli(flags); if (vma->vm_mm != current->mm) { saved_asid = get_asid(); set_asid(asid); } __flush_tlb_page(asid, page); if (saved_asid != MMU_NO_ASID) set_asid(saved_asid); restore_flags(flags); } }
void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (mm->context != NO_CONTEXT) { unsigned long flags; int size;
save_and_cli(flags); size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT; if (size > (MMU_NTLB_ENTRIES/4)) { /* Too many TLB to flush */ mm->context = NO_CONTEXT; if (mm == current->mm) activate_context(mm); } else { unsigned long asid = mm->context&MMU_CONTEXT_ASID_MASK; unsigned long saved_asid = MMU_NO_ASID;
start &= PAGE_MASK; end += (PAGE_SIZE - 1); end &= PAGE_MASK; if (mm != current->mm) { saved_asid = get_asid(); set_asid(asid); } while (start < end) { __flush_tlb_page(asid, start); start += PAGE_SIZE; } if (saved_asid != MMU_NO_ASID) set_asid(saved_asid); } restore_flags(flags); } }
void flush_tlb_mm(struct mm_struct *mm) { /* Invalidate all TLB of this process. */ /* Instead of invalidating each TLB, we get new MMU context. */ if (mm->context != NO_CONTEXT) { unsigned long flags;
save_and_cli(flags); mm->context = NO_CONTEXT; if (mm == current->mm) activate_context(mm); restore_flags(flags); } }
void flush_tlb_all(void) { unsigned long flags, status;
/* * Flush all the TLB. * * Write to the MMU control register's bit: * TF-bit for SH-3, TI-bit for SH-4. * It's same position, bit #2. */ save_and_cli(flags); status = ctrl_inl(MMUCR); status |= 0x04; ctrl_outl(status, MMUCR); restore_flags(flags); }
|