Viewing file: time.c (12.56 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: time.c,v 1.30 2001/09/01 14:34:31 mrbrown Exp $ * * linux/arch/sh/kernel/time.c * * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> * * Some code taken from i386 version. * Copyright (C) 1991, 1992, 1995 Linus Torvalds */
#include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/time.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/smp.h>
#include <asm/processor.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/delay.h> #include <asm/machvec.h> #include <asm/rtc.h>
#include <linux/timex.h> #include <linux/irq.h>
#define TMU_TOCR_INIT 0x00 #define TMU0_TCR_INIT 0x0020 #define TMU_TSTR_INIT 1
#define TMU0_TCR_CALIB 0x0000
#if defined(__sh3__) #define TMU_TOCR 0xfffffe90 /* Byte access */ #define TMU_TSTR 0xfffffe92 /* Byte access */
#define TMU0_TCOR 0xfffffe94 /* Long access */ #define TMU0_TCNT 0xfffffe98 /* Long access */ #define TMU0_TCR 0xfffffe9c /* Word access */
#define FRQCR 0xffffff80 #elif defined(__SH4__) #define TMU_TOCR 0xffd80000 /* Byte access */ #define TMU_TSTR 0xffd80004 /* Byte access */
#define TMU0_TCOR 0xffd80008 /* Long access */ #define TMU0_TCNT 0xffd8000c /* Long access */ #define TMU0_TCR 0xffd80010 /* Word access */
#define FRQCR 0xffc00000
/* Core Processor Version Register */ #define CCN_PVR 0xff000030 #define CCN_PVR_CHIP_SHIFT 24 #define CCN_PVR_CHIP_MASK 0xff #define CCN_PVR_CHIP_ST40STB1 0x4
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1 #define CLOCKGEN_MEMCLKCR 0xbb040038 #define MEMCLKCR_RATIO_MASK 0x7 #endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */ #endif /* __sh3__ or __SH4__ */
extern rwlock_t xtime_lock; extern unsigned long wall_jiffies; #define TICK_SIZE tick
static unsigned long do_gettimeoffset(void) { int count;
static int count_p = 0x7fffffff; /* for the first call after boot */ static unsigned long jiffies_p = 0;
/* * cache volatile jiffies temporarily; we have IRQs turned off. */ unsigned long jiffies_t;
/* timer count may underflow right here */ count = ctrl_inl(TMU0_TCNT); /* read the latched count */
jiffies_t = jiffies;
/* * avoiding timer inconsistencies (they are rare, but they happen)... * there is one kind of problem that must be avoided here: * 1. the timer counter underflows */
if( jiffies_t == jiffies_p ) { if( count > count_p ) { /* the nutcase */
if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */ /* * We cannot detect lost timer interrupts ... * well, that's why we call them lost, don't we? :) * [hmm, on the Pentium and Alpha we can ... sort of] */ count -= LATCH; } else { printk("do_slow_gettimeoffset(): hardware timer problem?\n"); } } } else jiffies_p = jiffies_t;
count_p = count;
count = ((LATCH-1) - count) * TICK_SIZE; count = (count + LATCH/2) / LATCH;
return count; }
void do_gettimeofday(struct timeval *tv) { unsigned long flags; unsigned long usec, sec;
read_lock_irqsave(&xtime_lock, flags); usec = do_gettimeoffset(); { unsigned long lost = jiffies - wall_jiffies; if (lost) usec += lost * (1000000 / HZ); } sec = xtime.tv_sec; usec += xtime.tv_usec; read_unlock_irqrestore(&xtime_lock, flags);
while (usec >= 1000000) { usec -= 1000000; sec++; }
tv->tv_sec = sec; tv->tv_usec = usec; }
void do_settimeofday(struct timeval *tv) { write_lock_irq(&xtime_lock); /* * This is revolting. We need to set "xtime" correctly. However, the * value in this location is the value at the most recent update of * wall time. Discover what correction gettimeofday() would have * made, and then undo it! */ tv->tv_usec -= do_gettimeoffset(); tv->tv_usec -= (jiffies - wall_jiffies) * (1000000 / HZ);
while (tv->tv_usec < 0) { tv->tv_usec += 1000000; tv->tv_sec--; }
xtime = *tv; time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; write_unlock_irq(&xtime_lock); }
/* last time the RTC clock got updated */ static long last_rtc_update;
/* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { do_timer(regs);
if (!user_mode(regs)) sh_do_profile(regs->pc);
#ifdef CONFIG_HEARTBEAT if (sh_mv.mv_heartbeat != NULL) sh_mv.mv_heartbeat(); #endif
/* * If we have an externally synchronized Linux clock, then update * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 && xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) { if (sh_mv.mv_rtc_settimeofday(&xtime) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } }
/* * This is the same as the above, except we _also_ save the current * Time Stamp Counter value at the time of the timer interrupt, so that * we later on can estimate the time of day more exactly. */ static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { unsigned long timer_status;
/* Clear UNF bit */ timer_status = ctrl_inw(TMU0_TCR); timer_status &= ~0x100; ctrl_outw(timer_status, TMU0_TCR);
/* * Here we are in the timer irq handler. We just have irqs locally * disabled but we don't know if the timer_bh is running on the other * CPU. We need to avoid to SMP race with it. NOTE: we don' t need * the irq version of write_lock because as just said we have irq * locally disabled. -arca */ write_lock(&xtime_lock); do_timer_interrupt(irq, NULL, regs); write_unlock(&xtime_lock); }
static unsigned int __init get_timer_frequency(void) { u32 freq; struct timeval tv1, tv2; unsigned long diff_usec; unsigned long factor;
/* Setup the timer: We don't want to generate interrupts, just * have it count down at its natural rate. */ ctrl_outb(0, TMU_TSTR); ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR); ctrl_outl(0xffffffff, TMU0_TCOR); ctrl_outl(0xffffffff, TMU0_TCNT);
rtc_gettimeofday(&tv2);
do { rtc_gettimeofday(&tv1); } while (tv1.tv_usec == tv2.tv_usec && tv1.tv_sec == tv2.tv_sec);
/* actually start the timer */ ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
do { rtc_gettimeofday(&tv2); } while (tv1.tv_usec == tv2.tv_usec && tv1.tv_sec == tv2.tv_sec);
freq = 0xffffffff - ctrl_inl(TMU0_TCNT); if (tv2.tv_usec < tv1.tv_usec) { tv2.tv_usec += 1000000; tv2.tv_sec--; }
diff_usec = (tv2.tv_sec - tv1.tv_sec) * 1000000 + (tv2.tv_usec - tv1.tv_usec);
/* this should work well if the RTC has a precision of n Hz, where * n is an integer. I don't think we have to worry about the other * cases. */ factor = (1000000 + diff_usec/2) / diff_usec;
if (factor * diff_usec > 1100000 || factor * diff_usec < 900000) panic("weird RTC (diff_usec %ld)", diff_usec);
return freq * factor; }
static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
void __init time_init(void) { unsigned int cpu_clock, master_clock, bus_clock, module_clock; #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 unsigned int memory_clock; #endif unsigned int timer_freq; unsigned short frqcr, ifc, pfc, bfc; unsigned long interval; #if defined(__sh3__) static int ifc_table[] = { 1, 2, 4, 1, 3, 1, 1, 1 }; static int pfc_table[] = { 1, 2, 4, 1, 3, 6, 1, 1 }; static int stc_table[] = { 1, 2, 4, 8, 3, 6, 1, 1 }; #elif defined(__SH4__) static int ifc_table[] = { 1, 2, 3, 4, 6, 8, 1, 1 }; #define bfc_table ifc_table /* Same */ static int pfc_table[] = { 2, 3, 4, 6, 8, 2, 2, 2 };
#ifdef CONFIG_CPU_SUBTYPE_ST40STB1 struct frqcr_data { unsigned short frqcr; struct { unsigned char multiplier; unsigned char divisor; } factor[3]; };
static struct frqcr_data st40_frqcr_table[] = { { 0x000, {{1,1}, {1,1}, {1,2}}}, { 0x002, {{1,1}, {1,1}, {1,4}}}, { 0x004, {{1,1}, {1,1}, {1,8}}}, { 0x008, {{1,1}, {1,2}, {1,2}}}, { 0x00A, {{1,1}, {1,2}, {1,4}}}, { 0x00C, {{1,1}, {1,2}, {1,8}}}, { 0x011, {{1,1}, {2,3}, {1,6}}}, { 0x013, {{1,1}, {2,3}, {1,3}}}, { 0x01A, {{1,1}, {1,2}, {1,4}}}, { 0x01C, {{1,1}, {1,2}, {1,8}}}, { 0x023, {{1,1}, {2,3}, {1,3}}}, { 0x02C, {{1,1}, {1,2}, {1,8}}}, { 0x048, {{1,2}, {1,2}, {1,4}}}, { 0x04A, {{1,2}, {1,2}, {1,6}}}, { 0x04C, {{1,2}, {1,2}, {1,8}}}, { 0x05A, {{1,2}, {1,3}, {1,6}}}, { 0x05C, {{1,2}, {1,3}, {1,6}}}, { 0x063, {{1,2}, {1,4}, {1,4}}}, { 0x06C, {{1,2}, {1,4}, {1,8}}}, { 0x091, {{1,3}, {1,3}, {1,6}}}, { 0x093, {{1,3}, {1,3}, {1,6}}}, { 0x0A3, {{1,3}, {1,6}, {1,6}}}, { 0x0DA, {{1,4}, {1,4}, {1,8}}}, { 0x0DC, {{1,4}, {1,4}, {1,8}}}, { 0x0EC, {{1,4}, {1,8}, {1,8}}}, { 0x123, {{1,4}, {1,4}, {1,8}}}, { 0x16C, {{1,4}, {1,8}, {1,8}}}, };
struct memclk_data { unsigned char multiplier; unsigned char divisor; }; static struct memclk_data st40_memclk_table[8] = { {1,1}, // 000 {1,2}, // 001 {1,3}, // 010 {2,3}, // 011 {1,4}, // 100 {1,6}, // 101 {1,8}, // 110 {1,8} // 111 }; #endif #endif
rtc_gettimeofday(&xtime);
setup_irq(TIMER_IRQ, &irq0);
timer_freq = get_timer_frequency();
module_clock = timer_freq * 4;
#if defined(__sh3__) { unsigned short tmp;
frqcr = ctrl_inw(FRQCR); tmp = (frqcr & 0x8000) >> 13; tmp |= (frqcr & 0x0030) >> 4; bfc = stc_table[tmp]; tmp = (frqcr & 0x4000) >> 12; tmp |= (frqcr & 0x000c) >> 2; ifc = ifc_table[tmp]; tmp = (frqcr & 0x2000) >> 11; tmp |= frqcr & 0x0003; pfc = pfc_table[tmp]; } #elif defined(__SH4__) { #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 unsigned long pvr;
/* This should probably be moved into the SH3 probing code, and then use the processor * structure to determine which CPU we are running on. */ pvr = ctrl_inl(CCN_PVR); printk("PVR %08x\n", pvr);
if (((pvr >>CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1) { /* Unfortunatly the STB1 FRQCR values are different from the 7750 ones */ struct frqcr_data *d; int a; unsigned long memclkcr; struct memclk_data *e;
for (a=0; a<ARRAY_SIZE(st40_frqcr_table); a++) { d = &st40_frqcr_table[a]; if (d->frqcr == (frqcr & 0x1ff)) break; } if (a == ARRAY_SIZE(st40_frqcr_table)) { d = st40_frqcr_table; printk("ERROR: Unrecognised FRQCR value, using default multipliers\n"); }
memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR); e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK];
printk("Clock multipliers: CPU: %d/%d Bus: %d/%d Mem: %d/%d Periph: %d/%d\n", d->factor[0].multiplier, d->factor[0].divisor, d->factor[1].multiplier, d->factor[1].divisor, e->multiplier, e->divisor, d->factor[2].multiplier, d->factor[2].divisor); master_clock = module_clock * d->factor[2].divisor / d->factor[2].multiplier; bus_clock = master_clock * d->factor[1].multiplier / d->factor[1].divisor; memory_clock = master_clock * e->multiplier / e->divisor; cpu_clock = master_clock * d->factor[0].multiplier / d->factor[0].divisor; goto skip_calc; } else #endif { frqcr = ctrl_inw(FRQCR);
ifc = ifc_table[(frqcr>> 6) & 0x0007]; bfc = bfc_table[(frqcr>> 3) & 0x0007]; pfc = pfc_table[frqcr & 0x0007]; } } #endif master_clock = module_clock * pfc; bus_clock = master_clock / bfc; cpu_clock = master_clock / ifc; #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 skip_calc: #endif printk("CPU clock: %d.%02dMHz\n", (cpu_clock / 1000000), (cpu_clock % 1000000)/10000); printk("Bus clock: %d.%02dMHz\n", (bus_clock/1000000), (bus_clock % 1000000)/10000); #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 printk("Memory clock: %d.%02dMHz\n", (memory_clock/1000000), (memory_clock % 1000000)/10000); #endif printk("Module clock: %d.%02dMHz\n", (module_clock/1000000), (module_clock % 1000000)/10000); interval = (module_clock/4 + HZ/2) / HZ;
printk("Interval = %ld\n", interval);
current_cpu_data.cpu_clock = cpu_clock; current_cpu_data.master_clock = master_clock; current_cpu_data.bus_clock = bus_clock; #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 current_cpu_data.memory_clock = memory_clock; #endif current_cpu_data.module_clock = module_clock;
/* Start TMU0 */ ctrl_outb(0, TMU_TSTR); ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); ctrl_outl(interval, TMU0_TCOR); ctrl_outl(interval, TMU0_TCNT); ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); }
|