Viewing file: ip27-nmi.c (3.88 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#include <linux/kernel.h> #include <linux/mmzone.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <asm/atomic.h> #include <asm/sn/types.h> #include <asm/sn/addrs.h> #include <asm/sn/nmi.h> #include <asm/sn/arch.h> #include <asm/sn/sn0/hub.h>
#if 0 #define NODE_NUM_CPUS(n) CNODE_NUM_CPUS(n) #else #define NODE_NUM_CPUS(n) CPUS_PER_NODE #endif
#define CNODEID_NONE (cnodeid_t)-1 #define enter_panic_mode() spin_lock(&nmi_lock)
typedef unsigned long machreg_t;
spinlock_t nmi_lock = SPIN_LOCK_UNLOCKED;
/* * Lets see what else we need to do here. Set up sp, gp? */ void nmi_dump(void) { void cont_nmi_dump(void);
cont_nmi_dump(); }
void install_cpu_nmi_handler(int slice) { nmi_t *nmi_addr;
nmi_addr = (nmi_t *)NMI_ADDR(get_nasid(), slice); if (nmi_addr->call_addr) return; nmi_addr->magic = NMI_MAGIC; nmi_addr->call_addr = (void *)nmi_dump; nmi_addr->call_addr_c = (void *)(~((unsigned long)(nmi_addr->call_addr))); nmi_addr->call_parm = 0; }
/* * Copy the cpu registers which have been saved in the IP27prom format * into the eframe format for the node under consideration. */
void nmi_cpu_eframe_save(nasid_t nasid, int slice) { int i, numberof_nmi_cpu_regs; machreg_t *prom_format;
/* Get the total number of registers being saved by the prom */ numberof_nmi_cpu_regs = sizeof(struct reg_struct) / sizeof(machreg_t);
/* Get the pointer to the current cpu's register set. */ prom_format = (machreg_t *)(TO_UNCAC(TO_NODE(nasid, IP27_NMI_KREGS_OFFSET)) + slice * IP27_NMI_KREGS_CPU_SIZE);
printk("NMI nasid %d: slice %d\n", nasid, slice); for (i = 0; i < numberof_nmi_cpu_regs; i++) printk("0x%lx ", prom_format[i]); printk("\n\n"); }
/* * Copy the cpu registers which have been saved in the IP27prom format * into the eframe format for the node under consideration. */ void nmi_node_eframe_save(cnodeid_t cnode) { int cpu; nasid_t nasid;
/* Make sure that we have a valid node */ if (cnode == CNODEID_NONE) return;
nasid = COMPACT_TO_NASID_NODEID(cnode); if (nasid == INVALID_NASID) return;
/* Save the registers into eframe for each cpu */ for(cpu = 0; cpu < NODE_NUM_CPUS(cnode); cpu++) nmi_cpu_eframe_save(nasid, cpu); }
/* * Save the nmi cpu registers for all cpus in the system. */ void nmi_eframes_save(void) { cnodeid_t cnode;
for(cnode = 0 ; cnode < numnodes; cnode++) nmi_node_eframe_save(cnode); }
void cont_nmi_dump(void) { #ifndef REAL_NMI_SIGNAL static atomic_t nmied_cpus = ATOMIC_INIT(0);
atomic_inc(&nmied_cpus); #endif /* * Use enter_panic_mode to allow only 1 cpu to proceed */ enter_panic_mode();
#ifdef REAL_NMI_SIGNAL /* * Wait up to 15 seconds for the other cpus to respond to the NMI. * If a cpu has not responded after 10 sec, send it 1 additional NMI. * This is for 2 reasons: * - sometimes a MMSC fail to NMI all cpus. * - on 512p SN0 system, the MMSC will only send NMIs to * half the cpus. Unfortunately, we dont know which cpus may be * NMIed - it depends on how the site chooses to configure. * * Note: it has been measure that it takes the MMSC up to 2.3 secs to * send NMIs to all cpus on a 256p system. */ for (i=0; i < 1500; i++) { for (node=0; node < numnodes; node++) if (NODEPDA(node)->dump_count == 0) break; if (node == numnodes) break; if (i == 1000) { for (node=0; node < numnodes; node++) if (NODEPDA(node)->dump_count == 0) { cpu = CNODE_TO_CPU_BASE(node); for (n=0; n < CNODE_NUM_CPUS(node); cpu++, n++) { CPUMASK_SETB(nmied_cpus, cpu); /* * cputonasid, cputoslice * needs kernel cpuid */ SEND_NMI((cputonasid(cpu)), (cputoslice(cpu))); } } } udelay(10000); } #else while (atomic_read(&nmied_cpus) != smp_num_cpus); #endif
/* * Save the nmi cpu registers for all cpu in the eframe format. */ nmi_eframes_save(); LOCAL_HUB_S(NI_PORT_RESET, NPR_PORTRESET | NPR_LOCALRESET); }
|