Viewing file: traps.c (13.54 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 1999 by Ralf Baechle * Copyright (C) 1995, 1996 Paul M. Antoine * Copyright (C) 1998 Ulf Carlsson * Copyright (C) 1999 Silicon Graphics, Inc. */ #include <linux/config.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/spinlock.h>
#include <asm/branch.h> #include <asm/cachectl.h> #include <asm/pgtable.h> #include <asm/io.h> #include <asm/bootinfo.h> #include <asm/ptrace.h> #include <asm/watch.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/mmu_context.h>
extern asmlinkage void __xtlb_mod(void); extern asmlinkage void __xtlb_tlbl(void); extern asmlinkage void __xtlb_tlbs(void); extern asmlinkage void handle_adel(void); extern asmlinkage void handle_ades(void); extern asmlinkage void handle_ibe(void); extern asmlinkage void handle_dbe(void); extern asmlinkage void handle_sys(void); extern asmlinkage void handle_bp(void); extern asmlinkage void handle_ri(void); extern asmlinkage void handle_cpu(void); extern asmlinkage void handle_ov(void); extern asmlinkage void handle_tr(void); extern asmlinkage void handle_fpe(void); extern asmlinkage void handle_watch(void); extern asmlinkage void handle_reserved(void);
static char *cpu_names[] = CPU_NAMES;
char watch_available = 0; char dedicated_iv_available = 0; char vce_available = 0; char mips4_available = 0;
int kstack_depth_to_print = 24;
/* * These constant is for searching for possible module text segments. * MODULE_RANGE is a guess of how much space is likely to be vmalloced. */ #define MODULE_RANGE (8*1024*1024)
/* * This routine abuses get_user()/put_user() to reference pointers * with at least a bit of error checking ... */ void show_stack(unsigned long *sp) { int i; unsigned long *stack;
stack = sp; i = 0;
printk("Stack:"); while ((unsigned long) stack & (PAGE_SIZE - 1)) { unsigned long stackdata;
if (__get_user(stackdata, stack++)) { printk(" (Bad stack address)"); break; }
printk(" %016lx", stackdata);
if (++i > 40) { printk(" ..."); break; }
if (i % 4 == 0) printk("\n "); } }
void show_trace(unsigned long *sp) { int i; unsigned long *stack; unsigned long kernel_start, kernel_end; unsigned long module_start, module_end; extern char _stext, _etext;
stack = sp; i = 0;
kernel_start = (unsigned long) &_stext; kernel_end = (unsigned long) &_etext; module_start = VMALLOC_START; module_end = module_start + MODULE_RANGE;
printk("\nCall Trace:");
while ((unsigned long) stack & (PAGE_SIZE -1)) { unsigned long addr;
if (__get_user(addr, stack++)) { printk(" (Bad stack address)\n"); break; }
/* * If the address is either in the text segment of the * kernel, or in the region which contains vmalloc'ed * memory, it *may* be the address of a calling * routine; if so, print it so that someone tracing * down the cause of the crash will be able to figure * out the call path that was taken. */
if ((addr >= kernel_start && addr < kernel_end) || (addr >= module_start && addr < module_end)) {
/* Since our kernel is still at KSEG0, * truncate the address so that ksymoops * understands it. */ printk(" [<%08x>]", (unsigned int) addr); if (++i > 40) { printk(" ..."); break; } } } }
void show_code(unsigned int *pc) { long i;
printk("\nCode:");
for(i = -3 ; i < 6 ; i++) { unsigned int insn; if (__get_user(insn, pc + i)) { printk(" (Bad address in epc)\n"); break; } printk("%c%08x%c",(i?' ':'<'),insn,(i?' ':'>')); } }
spinlock_t die_lock;
void die(const char * str, struct pt_regs * regs, unsigned long err) { if (user_mode(regs)) /* Just return if in user mode. */ return;
console_verbose(); spin_lock_irq(&die_lock); printk("%s: %04lx\n", str, err & 0xffff); show_regs(regs); printk("Process %s (pid: %d, stackpage=%08lx)\n", current->comm, current->pid, (unsigned long) current); show_stack((unsigned long *) regs->regs[29]); show_trace((unsigned long *) regs->regs[29]); show_code((unsigned int *) regs->cp0_epc); printk("\n"); spin_unlock_irq(&die_lock); do_exit(SIGSEGV); }
void die_if_kernel(const char * str, struct pt_regs * regs, unsigned long err) { if (!user_mode(regs)) die(str, regs, err); }
void do_ov(struct pt_regs *regs) { if (compute_return_epc(regs)) return; force_sig(SIGFPE, current); }
#ifdef CONFIG_MIPS_FPE_MODULE static void (*fpe_handler)(struct pt_regs *regs, unsigned int fcr31);
/* * Register_fpe/unregister_fpe are for debugging purposes only. To make * this hack work a bit better there is no error checking. */ int register_fpe(void (*handler)(struct pt_regs *regs, unsigned int fcr31)) { fpe_handler = handler; return 0; }
int unregister_fpe(void (*handler)(struct pt_regs *regs, unsigned int fcr31)) { fpe_handler = NULL; return 0; } #endif
/* * XXX Delayed fp exceptions when doing a lazy ctx switch XXX */ void do_fpe(struct pt_regs *regs, unsigned long fcr31) { unsigned long pc; unsigned int insn; extern void simfp(unsigned int);
#ifdef CONFIG_MIPS_FPE_MODULE if (fpe_handler != NULL) { fpe_handler(regs, fcr31); return; } #endif if (fcr31 & 0x20000) { /* Retry instruction with flush to zero ... */ if (!(fcr31 & (1<<24))) { printk("Setting flush to zero for %s.\n", current->comm); fcr31 &= ~0x20000; fcr31 |= (1<<24); __asm__ __volatile__( "ctc1\t%0,$31" : /* No outputs */ : "r" (fcr31)); return; } pc = regs->cp0_epc + ((regs->cp0_cause & CAUSEF_BD) ? 4 : 0); if (get_user(insn, (unsigned int *)pc)) { /* XXX Can this happen? */ force_sig(SIGSEGV, current); }
printk(KERN_DEBUG "Unimplemented exception for insn %08x at 0x%08lx in %s.\n", insn, regs->cp0_epc, current->comm); simfp(insn); }
if (compute_return_epc(regs)) return; //force_sig(SIGFPE, current); printk(KERN_DEBUG "Should send SIGFPE to %s\n", current->comm); }
void do_bp(struct pt_regs *regs) { unsigned int opcode, bcode; unsigned int *epc; siginfo_t info;
epc = (unsigned int *) regs->cp0_epc + ((regs->cp0_cause & CAUSEF_BD) != 0); if (get_user(opcode, epc)) goto sigsegv;
/* * There is the ancient bug in the MIPS assemblers that the break * code starts left to bit 16 instead to bit 6 in the opcode. * Gas is bug-compatible ... */ bcode = ((opcode >> 16) & ((1 << 20) - 1));
/* * (A short test says that IRIX 5.3 sends SIGTRAP for all break * insns, even for break codes that indicate arithmetic failures. * Weird ...) * But should we continue the brokenness??? --macro */ switch (bcode) { case 6: case 7: if (bcode == 7) info.si_code = FPE_INTDIV; else info.si_code = FPE_INTOVF; info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void *)compute_return_epc(regs); force_sig_info(SIGFPE, &info, current); break; default: force_sig(SIGTRAP, current); }
force_sig(SIGTRAP, current); return;
sigsegv: force_sig(SIGSEGV, current); }
void do_tr(struct pt_regs *regs) { unsigned int opcode, bcode; unsigned int *epc; siginfo_t info;
epc = (unsigned int *) regs->cp0_epc + ((regs->cp0_cause & CAUSEF_BD) != 0); if (get_user(opcode, epc)) goto sigsegv;
bcode = ((opcode >> 6) & ((1 << 20) - 1));
/* * (A short test says that IRIX 5.3 sends SIGTRAP for all break * insns, even for break codes that indicate arithmetic failures. * Wiered ...) * But should we continue the brokenness??? --macro */ switch (bcode) { case 6: case 7: if (bcode == 7) info.si_code = FPE_INTDIV; else info.si_code = FPE_INTOVF; info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void *)compute_return_epc(regs); force_sig_info(SIGFPE, &info, current); break; default: force_sig(SIGTRAP, current); } return;
sigsegv: force_sig(SIGSEGV, current); }
void do_ri(struct pt_regs *regs) { printk("Cpu%d[%s:%d] Illegal instruction at %08lx ra=%08lx\n", smp_processor_id(), current->comm, current->pid, regs->cp0_epc, regs->regs[31]); if (compute_return_epc(regs)) return; force_sig(SIGILL, current); }
void do_cpu(struct pt_regs *regs) { u32 cpid;
cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; if (cpid != 1) goto bad_cid;
regs->cp0_status |= ST0_CU1; #ifndef CONFIG_SMP if (last_task_used_math == current) return;
if (current->used_math) { /* Using the FPU again. */ lazy_fpu_switch(last_task_used_math, current); } else { /* First time FPU user. */ lazy_fpu_switch(last_task_used_math, 0); init_fpu(); current->used_math = 1; } last_task_used_math = current; #else if (current->used_math) { lazy_fpu_switch(0, current); } else { init_fpu(); current->used_math = 1; } current->flags |= PF_USEDFPU; #endif return;
bad_cid: force_sig(SIGILL, current); }
void do_watch(struct pt_regs *regs) { /* * We use the watch exception where available to detect stack * overflows. */ show_regs(regs); panic("Caught WATCH exception - probably caused by stack overflow."); }
void do_reserved(struct pt_regs *regs) { /* * Game over - no way to handle this if it ever occurs. Most probably * caused by a new unknown cpu type or after another deadly * hard/software error. */ panic("Caught reserved exception %ld - should not happen.", (regs->cp0_cause & 0x1f) >> 2); }
static inline void watch_init(unsigned long cputype) { switch(cputype) { case CPU_R10000: case CPU_R4000MC: case CPU_R4400MC: case CPU_R4000SC: case CPU_R4400SC: case CPU_R4000PC: case CPU_R4400PC: case CPU_R4200: case CPU_R4300: set_except_vector(23, handle_watch); watch_available = 1; break; } }
/* * Some MIPS CPUs have a dedicated interrupt vector which reduces the * interrupt processing overhead. Use it where available. * FIXME: more CPUs than just the Nevada have this feature. */ static inline void setup_dedicated_int(void) { extern void except_vec4(void);
switch(mips_cputype) { case CPU_NEVADA: memcpy((void *)(KSEG0 + 0x200), except_vec4, 8); set_cp0_cause(CAUSEF_IV, CAUSEF_IV); dedicated_iv_available = 1; } }
unsigned long exception_handlers[32];
/* * As a side effect of the way this is implemented we're limited * to interrupt handlers in the address range from * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ... */ void set_except_vector(int n, void *addr) { unsigned long handler = (unsigned long) addr; exception_handlers[n] = handler; if (n == 0 && dedicated_iv_available) { *(volatile u32 *)(KSEG0+0x200) = 0x08000000 | (0x03ffffff & (handler >> 2)); flush_icache_range(KSEG0+0x200, KSEG0 + 0x204); } }
static inline void mips4_setup(void) { switch (mips_cputype) { case CPU_R5000: case CPU_R5000A: case CPU_NEVADA: case CPU_R8000: case CPU_R10000: mips4_available = 1; set_cp0_status(ST0_XX, ST0_XX); } }
static inline void go_64(void) { unsigned int bits;
bits = ST0_KX|ST0_SX|ST0_UX; set_cp0_status(bits, bits); printk("Entering 64-bit mode.\n"); }
void __init trap_init(void) { extern char except_vec0; extern char except_vec1_r10k; extern char except_vec2_generic; extern char except_vec3_generic, except_vec3_r4000; extern void bus_error_init(void); unsigned long i;
/* Some firmware leaves the BEV flag set, clear it. */ set_cp0_status(ST0_BEV, 0);
/* Copy the generic exception handler code to it's final destination. */ memcpy((void *)(KSEG0 + 0x100), &except_vec2_generic, 0x80); memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic, 0x80);
/* * Setup default vectors */ for(i = 0; i <= 31; i++) set_except_vector(i, handle_reserved);
/* * Only some CPUs have the watch exceptions or a dedicated * interrupt vector. */ watch_init(mips_cputype); setup_dedicated_int(); mips4_setup(); go_64(); /* In memoriam C128 ;-) */
/* * Handling the following exceptions depends mostly of the cpu type */ switch(mips_cputype) { case CPU_R10000: /* * The R10000 is in most aspects similar to the R4400. It * should get some special optimizations. */ write_32bit_cp0_register(CP0_FRAMEMASK, 0); set_cp0_status(ST0_XX, ST0_XX); goto r4k;
case CPU_R4000MC: case CPU_R4400MC: case CPU_R4000SC: case CPU_R4400SC: vce_available = 1; /* Fall through ... */ case CPU_R4000PC: case CPU_R4400PC: case CPU_R4200: case CPU_R4300: case CPU_R4600: case CPU_R5000: case CPU_NEVADA: r4k: /* Debug TLB refill handler. */ memcpy((void *)KSEG0, &except_vec0, 0x80); memcpy((void *)KSEG0 + 0x080, &except_vec1_r10k, 0x80);
/* Cache error vector */ memcpy((void *)(KSEG0 + 0x100), (void *) KSEG0, 0x80);
if (vce_available) { memcpy((void *)(KSEG0 + 0x180), &except_vec3_r4000, 0x180); } else { memcpy((void *)(KSEG0 + 0x180), &except_vec3_generic, 0x100); }
set_except_vector(1, __xtlb_mod); set_except_vector(2, __xtlb_tlbl); set_except_vector(3, __xtlb_tlbs); set_except_vector(4, handle_adel); set_except_vector(5, handle_ades);
/* DBE / IBE exception handler are system specific. */ bus_error_init();
set_except_vector(8, handle_sys); set_except_vector(9, handle_bp); set_except_vector(10, handle_ri); set_except_vector(11, handle_cpu); set_except_vector(12, handle_ov); set_except_vector(13, handle_tr); set_except_vector(15, handle_fpe); break;
case CPU_R8000: panic("unsupported CPU type %s.\n", cpu_names[mips_cputype]); break;
case CPU_UNKNOWN: default: panic("Unknown CPU type"); } flush_icache_range(KSEG0, KSEG0 + 0x200);
atomic_inc(&init_mm.mm_count); /* XXX UP? */ current->active_mm = &init_mm; }
|