Viewing file: smp.c (6.71 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#include <linux/config.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/threads.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/sched.h> #include <linux/cache.h>
#include <asm/atomic.h> #include <asm/processor.h> #include <asm/system.h> #include <asm/hardirq.h> #include <asm/softirq.h> #include <asm/mmu_context.h> #include <asm/irq.h>
#ifdef CONFIG_SGI_IP27
#include <asm/sn/arch.h> #include <asm/sn/intr.h> #include <asm/sn/addrs.h> #include <asm/sn/agent.h> #include <asm/sn/sn0/ip27.h>
#define DORESCHED 0xab #define DOCALL 0xbc
static void sendintr(int destid, unsigned char status) { int irq;
#if (CPUS_PER_NODE == 2) switch (status) { case DORESCHED: irq = CPU_RESCHED_A_IRQ; break; case DOCALL: irq = CPU_CALL_A_IRQ; break; default: panic("sendintr"); } irq += cputoslice(destid);
/* * Convert the compact hub number to the NASID to get the correct * part of the address space. Then set the interrupt bit associated * with the CPU we want to send the interrupt to. */ REMOTE_HUB_SEND_INTR(COMPACT_TO_NASID_NODEID(cputocnode(destid)), FAST_IRQ_TO_LEVEL(irq)); #else << Bomb! Must redefine this for more than 2 CPUS. >> #endif }
#endif /* CONFIG_SGI_IP27 */
/* The 'big kernel lock' */ spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; int smp_threads_ready; /* Not used */ atomic_t smp_commenced = ATOMIC_INIT(0); struct cpuinfo_mips cpu_data[NR_CPUS]; int smp_num_cpus = 1; /* Number that came online. */ int __cpu_number_map[NR_CPUS]; int __cpu_logical_map[NR_CPUS]; cycles_t cacheflush_time;
static void smp_tune_scheduling (void) { }
void __init smp_boot_cpus(void) { extern void allowboot(void);
init_new_context(current, &init_mm); current->processor = 0; init_idle(); smp_tune_scheduling(); allowboot(); }
void __init smp_commence(void) { wmb(); atomic_set(&smp_commenced,1); }
static void stop_this_cpu(void *dummy) { /* * Remove this CPU */ for (;;); }
void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 1, 0); smp_num_cpus = 1; }
/* * this function sends a 'reschedule' IPI to another CPU. * it goes straight through and wastes no time serializing * anything. Worst case is that we lose a reschedule ... */ void smp_send_reschedule(int cpu) { sendintr(cpu, DORESCHED); }
/* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; }
/* * Run a function on all other CPUs. * <func> The function to run. This must be fast and non-blocking. * <info> An arbitrary pointer to pass to the function. * <retry> If true, keep retrying until ready. * <wait> If true, wait until function has completed on other CPUs. * [RETURNS] 0 on success, else a negative status code. * * Does not return until remote CPUs are nearly ready to execute <func> * or are or have executed. */ static volatile struct call_data_struct { void (*func) (void *info); void *info; atomic_t started; atomic_t finished; int wait; } *call_data;
int smp_call_function (void (*func) (void *info), void *info, int retry, int wait) { struct call_data_struct data; int i, cpus = smp_num_cpus-1; static spinlock_t lock = SPIN_LOCK_UNLOCKED;
if (cpus == 0) return 0;
data.func = func; data.info = info; atomic_set(&data.started, 0); data.wait = wait; if (wait) atomic_set(&data.finished, 0);
spin_lock_bh(&lock); call_data = &data; /* Send a message to all other CPUs and wait for them to respond */ for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) sendintr(i, DOCALL);
/* Wait for response */ /* FIXME: lock-up detection, backtrace on lock-up */ while (atomic_read(&data.started) != cpus) barrier();
if (wait) while (atomic_read(&data.finished) != cpus) barrier(); spin_unlock_bh(&lock); return 0; }
extern void smp_call_function_interrupt(int irq, void *d, struct pt_regs *r) { void (*func) (void *info) = call_data->func; void *info = call_data->info; int wait = call_data->wait;
/* * Notify initiating CPU that I've grabbed the data and am * about to execute the function. */ atomic_inc(&call_data->started);
/* * At this point the info structure may be out of scope unless wait==1. */ (*func)(info); if (wait) atomic_inc(&call_data->finished); }
static void flush_tlb_all_ipi(void *info) { _flush_tlb_all(); }
void flush_tlb_all(void) { smp_call_function(flush_tlb_all_ipi, 0, 1, 1); _flush_tlb_all(); }
static void flush_tlb_mm_ipi(void *mm) { _flush_tlb_mm((struct mm_struct *)mm); }
/* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */
void flush_tlb_mm(struct mm_struct *mm) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, mm) = 0; } _flush_tlb_mm(mm); }
struct flush_tlb_data { struct mm_struct *mm; struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; };
static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
_flush_tlb_range(fd->mm, fd->addr1, fd->addr2); }
void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd;
fd.mm = mm; fd.addr1 = start; fd.addr2 = end; smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, mm) = 0; } _flush_tlb_range(mm, start, end); }
static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
_flush_tlb_page(fd->vma, fd->addr1); }
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd;
fd.vma = vma; fd.addr1 = page; smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, vma->vm_mm) = 0; } _flush_tlb_page(vma, page); }
|