Viewing file: smpboot.c (29.27 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * x86 SMP booting functions * * (c) 1995 Alan Cox, Building #3 <alan@redhat.com> * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> * * Much of the core SMP work is based on previous work by Thomas Radke, to * whom a great many thanks are extended. * * Thanks to Intel for making available several different Pentium, * Pentium Pro and Pentium-II/Xeon MP machines. * Original development of Linux SMP code supported by Caldera. * * This code is released under the GNU General Public License version 2 or * later. * * Fixes * Felix Koop : NR_CPUS used properly * Jose Renau : Handle single CPU case. * Alan Cox : By repeated request 8) - Total BogoMIP report. * Greg Wright : Fix for kernel stacks panic. * Erich Boleyn : MP v1.4 and additional changes. * Matthias Sattler : Changes for 2.1 kernel map. * Michel Lespinasse : Changes for 2.1 kernel map. * Michael Chastain : Change trampoline.S to gnu as. * Alan Cox : Dumb bug: 'B' step PPro's are fine * Ingo Molnar : Added APIC timers, based on code * from Jose Renau * Ingo Molnar : various cleanups and rewrites * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. * Maciej W. Rozycki : Bits for genuine 82489DX APICs * Martin J. Bligh : Added support for multi-quad systems */
#include <linux/config.h> #include <linux/init.h>
#include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/smp_lock.h> #include <linux/irq.h> #include <linux/bootmem.h>
#include <linux/delay.h> #include <linux/mc146818rtc.h> #include <asm/mtrr.h> #include <asm/pgalloc.h> #include <asm/smpboot.h>
/* Set if we find a B stepping CPU */ static int smp_b_stepping;
/* Setup configured maximum number of CPUs to activate */ static int max_cpus = -1;
/* Total count of live CPUs */ int smp_num_cpus = 1;
/* Number of siblings per CPU package */ int smp_num_siblings = 1; int __initdata phys_proc_id[NR_CPUS]; /* Package ID of each logical CPU */
/* Bitmask of currently online CPUs */ unsigned long cpu_online_map;
static volatile unsigned long cpu_callin_map; static volatile unsigned long cpu_callout_map;
/* Per CPU bogomips and other parameters */ struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
/* Set when the idlers are all forked */ int smp_threads_ready;
/* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to <NUM>. */
static int __init nosmp(char *str) { max_cpus = 0; return 1; }
__setup("nosmp", nosmp);
static int __init maxcpus(char *str) { get_option(&str, &max_cpus); return 1; }
__setup("maxcpus=", maxcpus);
/* * Trampoline 80x86 program as an array. */
extern unsigned char trampoline_data []; extern unsigned char trampoline_end []; static unsigned char *trampoline_base;
/* * Currently trivial. Write the real->protected mode * bootstrap into the page concerned. The caller * has made sure it's suitably aligned. */
static unsigned long __init setup_trampoline(void) { memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); return virt_to_phys(trampoline_base); }
/* * We are called very early to get the low memory for the * SMP bootup trampoline page. */ void __init smp_alloc_memory(void) { trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); /* * Has to be in very low memory so we can execute * real-mode AP code. */ if (__pa(trampoline_base) >= 0x9F000) BUG(); }
/* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */
void __init smp_store_cpu_info(int id) { struct cpuinfo_x86 *c = cpu_data + id;
*c = boot_cpu_data; c->pte_quick = 0; c->pmd_quick = 0; c->pgd_quick = 0; c->pgtable_cache_sz = 0; identify_cpu(c); /* * Mask B, Pentium, but not Pentium MMX */ if (c->x86_vendor == X86_VENDOR_INTEL && c->x86 == 5 && c->x86_mask >= 1 && c->x86_mask <= 4 && c->x86_model <= 3) /* * Remember we have B step Pentia with bugs */ smp_b_stepping = 1; }
/* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will load the system gdt's and jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */
static atomic_t smp_commenced = ATOMIC_INIT(0);
void __init smp_commence(void) { /* * Lets the callins below out of their loop. */ Dprintk("Setting commenced=1, go go go\n");
wmb(); atomic_set(&smp_commenced,1); }
/* * TSC synchronization. * * We first check wether all CPUs have their TSC's synchronized, * then we print a warning if not, and always resync. */
static atomic_t tsc_start_flag = ATOMIC_INIT(0); static atomic_t tsc_count_start = ATOMIC_INIT(0); static atomic_t tsc_count_stop = ATOMIC_INIT(0); static unsigned long long tsc_values[NR_CPUS];
#define NR_LOOPS 5
extern unsigned long fast_gettimeoffset_quotient;
/* * accurate 64-bit/32-bit division, expanded to 32-bit divisions and 64-bit * multiplication. Not terribly optimized but we need it at boot time only * anyway. * * result == a / b * == (a1 + a2*(2^32)) / b * == a1/b + a2*(2^32/b) * == a1/b + a2*((2^32-1)/b) + a2/b + (a2*((2^32-1) % b))/b * ^---- (this multiplication can overflow) */
static unsigned long long div64 (unsigned long long a, unsigned long b0) { unsigned int a1, a2; unsigned long long res;
a1 = ((unsigned int*)&a)[0]; a2 = ((unsigned int*)&a)[1];
res = a1/b0 + (unsigned long long)a2 * (unsigned long long)(0xffffffff/b0) + a2 / b0 + (a2 * (0xffffffff % b0)) / b0;
return res; }
static void __init synchronize_tsc_bp (void) { int i; unsigned long long t0; unsigned long long sum, avg; long long delta; unsigned long one_usec; int buggy = 0;
printk("checking TSC synchronization across CPUs: ");
one_usec = ((1<<30)/fast_gettimeoffset_quotient)*(1<<2);
atomic_set(&tsc_start_flag, 1); wmb();
/* * We loop a few times to get a primed instruction cache, * then the last pass is more or less synchronized and * the BP and APs set their cycle counters to zero all at * once. This reduces the chance of having random offsets * between the processors, and guarantees that the maximum * delay between the cycle counters is never bigger than * the latency of information-passing (cachelines) between * two CPUs. */ for (i = 0; i < NR_LOOPS; i++) { /* * all APs synchronize but they loop on '== num_cpus' */ while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_stop, 0); wmb(); /* * this lets the APs save their current TSC: */ atomic_inc(&tsc_count_start);
rdtscll(tsc_values[smp_processor_id()]); /* * We clear the TSC in the last loop: */ if (i == NR_LOOPS-1) write_tsc(0, 0);
/* * Wait for all APs to leave the synchronization point: */ while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_start, 0); wmb(); atomic_inc(&tsc_count_stop); }
sum = 0; for (i = 0; i < smp_num_cpus; i++) { t0 = tsc_values[i]; sum += t0; } avg = div64(sum, smp_num_cpus);
sum = 0; for (i = 0; i < smp_num_cpus; i++) { delta = tsc_values[i] - avg; if (delta < 0) delta = -delta; /* * We report bigger than 2 microseconds clock differences. */ if (delta > 2*one_usec) { long realdelta; if (!buggy) { buggy = 1; printk("\n"); } realdelta = div64(delta, one_usec); if (tsc_values[i] < avg) realdelta = -realdelta;
printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n", i, realdelta); }
sum += delta; } if (!buggy) printk("passed.\n"); }
static void __init synchronize_tsc_ap (void) { int i;
/* * smp_num_cpus is not necessarily known at the time * this gets called, so we first wait for the BP to * finish SMP initialization: */ while (!atomic_read(&tsc_start_flag)) mb();
for (i = 0; i < NR_LOOPS; i++) { atomic_inc(&tsc_count_start); while (atomic_read(&tsc_count_start) != smp_num_cpus) mb();
rdtscll(tsc_values[smp_processor_id()]); if (i == NR_LOOPS-1) write_tsc(0, 0);
atomic_inc(&tsc_count_stop); while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb(); } } #undef NR_LOOPS
extern void calibrate_delay(void);
static atomic_t init_deasserted;
void __init smp_callin(void) { int cpuid, phys_id; unsigned long timeout;
/* * If waken up by an INIT in an 82489DX configuration * we may get here before an INIT-deassert IPI reaches * our local APIC. We have to wait for the IPI or we'll * lock up on an APIC access. */ if (!clustered_apic_mode) while (!atomic_read(&init_deasserted));
/* * (This works even if the APIC is not enabled.) */ phys_id = GET_APIC_ID(apic_read(APIC_ID)); cpuid = current->processor; if (test_and_set_bit(cpuid, &cpu_online_map)) { printk("huh, phys CPU#%d, CPU#%d already present??\n", phys_id, cpuid); BUG(); } Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
/* * STARTUP IPIs are fragile beasts as they might sometimes * trigger some glue motherboard logic. Complete APIC bus * silence for 1 second, this overestimates the time the * boot CPU is spending to send the up to 2 STARTUP IPIs * by a factor of two. This should be enough. */
/* * Waiting 2s total for startup (udelay is not yet working) */ timeout = jiffies + 2*HZ; while (time_before(jiffies, timeout)) { /* * Has the boot CPU finished it's STARTUP sequence? */ if (test_bit(cpuid, &cpu_callout_map)) break; rep_nop(); }
if (!time_before(jiffies, timeout)) { printk("BUG: CPU%d started up but did not get a callout!\n", cpuid); BUG(); }
/* * the boot CPU has finished the init stage and is spinning * on callin_map until we finish. We are free to set up this * CPU, first the APIC. (this is probably redundant on most * boards) */
Dprintk("CALLIN, before setup_local_APIC().\n"); /* * Because we use NMIs rather than the INIT-STARTUP sequence to * bootstrap the CPUs, the APIC may be in a wierd state. Kick it. */ if (clustered_apic_mode) clear_local_APIC(); setup_local_APIC();
__sti();
#ifdef CONFIG_MTRR /* * Must be done before calibration delay is computed */ mtrr_init_secondary_cpu (); #endif /* * Get our bogomips. */ calibrate_delay(); Dprintk("Stack at about %p\n",&cpuid);
/* * Save our processor parameters */ smp_store_cpu_info(cpuid);
/* * Allow the master to continue. */ set_bit(cpuid, &cpu_callin_map);
/* * Synchronize the TSC with the BP */ if (cpu_has_tsc) synchronize_tsc_ap(); }
int cpucount;
extern int cpu_idle(void);
/* * Activate a secondary processor. */ int __init start_secondary(void *unused) { /* * Dont put anything before smp_callin(), SMP * booting is too fragile that we want to limit the * things done here to the most necessary things. */ cpu_init(); smp_callin(); while (!atomic_read(&smp_commenced)) rep_nop(); /* * low-memory mappings have been cleared, flush them from * the local TLBs too. */ local_flush_tlb();
return cpu_idle(); }
/* * Everything has been set up for the secondary * CPUs - they just need to reload everything * from the task structure * This function must not return. */ void __init initialize_secondary(void) { /* * We don't actually need to load the full TSS, * basically just the stack pointer and the eip. */
asm volatile( "movl %0,%%esp\n\t" "jmp *%1" : :"r" (current->thread.esp),"r" (current->thread.eip)); }
extern struct { void * esp; unsigned short ss; } stack_start;
static int __init fork_by_hand(void) { struct pt_regs regs; /* * don't care about the eip and regs settings since * we'll never reschedule the forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0); }
/* which physical APIC ID maps to which logical CPU number */ volatile int physical_apicid_2_cpu[MAX_APICID]; /* which logical CPU number maps to which physical APIC ID */ volatile int cpu_2_physical_apicid[NR_CPUS];
/* which logical APIC ID maps to which logical CPU number */ volatile int logical_apicid_2_cpu[MAX_APICID]; /* which logical CPU number maps to which logical APIC ID */ volatile int cpu_2_logical_apicid[NR_CPUS];
static inline void init_cpu_to_apicid(void) /* Initialize all maps between cpu number and apicids */ { int apicid, cpu;
for (apicid = 0; apicid < MAX_APICID; apicid++) { physical_apicid_2_cpu[apicid] = -1; logical_apicid_2_cpu[apicid] = -1; } for (cpu = 0; cpu < NR_CPUS; cpu++) { cpu_2_physical_apicid[cpu] = -1; cpu_2_logical_apicid[cpu] = -1; } }
static inline void map_cpu_to_boot_apicid(int cpu, int apicid) /* * set up a mapping between cpu and apicid. Uses logical apicids for multiquad, * else physical apic ids */ { if (clustered_apic_mode) { logical_apicid_2_cpu[apicid] = cpu; cpu_2_logical_apicid[cpu] = apicid; } else { physical_apicid_2_cpu[apicid] = cpu; cpu_2_physical_apicid[cpu] = apicid; } }
static inline void unmap_cpu_to_boot_apicid(int cpu, int apicid) /* * undo a mapping between cpu and apicid. Uses logical apicids for multiquad, * else physical apic ids */ { if (clustered_apic_mode) { logical_apicid_2_cpu[apicid] = -1; cpu_2_logical_apicid[cpu] = -1; } else { physical_apicid_2_cpu[apicid] = -1; cpu_2_physical_apicid[cpu] = -1; } }
#if APIC_DEBUG static inline void inquire_remote_apic(int apicid) { int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; char *names[] = { "ID", "VERSION", "SPIV" }; int timeout, status;
printk("Inquiring remote APIC #%d...\n", apicid);
for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { printk("... APIC #%d %s: ", apicid, names[i]);
/* * Wait for idle. */ apic_wait_icr_idle();
apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
timeout = 0; do { udelay(100); status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
switch (status) { case APIC_ICR_RR_VALID: status = apic_read(APIC_RRR); printk("%08x\n", status); break; default: printk("failed\n"); } } } #endif
static int wakeup_secondary_via_NMI(int logical_apicid) /* * Poke the other CPU in the eye to wake it up. Remember that the normal * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this * won't ... remember to clear down the APIC, etc later. */ { unsigned long send_status = 0, accept_status = 0; int timeout, maxlvt;
/* Target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
/* Boot on the stack */ /* Kick the second */ apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000));
/* * Give the other CPU some time to accept the IPI. */ udelay(200); /* * Due to the Pentium erratum 3AP. */ maxlvt = get_maxlvt(); if (maxlvt > 3) { apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); } accept_status = (apic_read(APIC_ESR) & 0xEF); Dprintk("NMI sent.\n");
if (send_status) printk("APIC never delivered???\n"); if (accept_status) printk("APIC delivery error (%lx).\n", accept_status);
return (send_status | accept_status); }
static int wakeup_secondary_via_INIT(int phys_apicid, unsigned long start_eip) { unsigned long send_status = 0, accept_status = 0; int maxlvt, timeout, num_starts, j;
Dprintk("Asserting INIT.\n");
/* * Turn INIT on target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
/* * Send IPI */ apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000));
mdelay(10);
Dprintk("Deasserting INIT.\n");
/* Target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
/* Send IPI */ apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000));
atomic_set(&init_deasserted, 1);
/* * Should we send STARTUP IPIs ? * * Determine this based on the APIC version. * If we don't have an integrated APIC, don't send the STARTUP IPIs. */ if (APIC_INTEGRATED(apic_version[phys_apicid])) num_starts = 2; else num_starts = 0;
/* * Run STARTUP IPI loop. */ Dprintk("#startup loops: %d.\n", num_starts);
maxlvt = get_maxlvt();
for (j = 1; j <= num_starts; j++) { Dprintk("Sending STARTUP #%d.\n",j); apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); Dprintk("After apic_write.\n");
/* * STARTUP IPI */
/* Target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
/* Boot on the stack */ /* Kick the second */ apic_write_around(APIC_ICR, APIC_DM_STARTUP | (start_eip >> 12));
/* * Give the other CPU some time to accept the IPI. */ udelay(300);
Dprintk("Startup point 1.\n");
Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000));
/* * Give the other CPU some time to accept the IPI. */ udelay(200); /* * Due to the Pentium erratum 3AP. */ if (maxlvt > 3) { apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); } accept_status = (apic_read(APIC_ESR) & 0xEF); if (send_status || accept_status) break; } Dprintk("After Startup.\n");
if (send_status) printk("APIC never delivered???\n"); if (accept_status) printk("APIC delivery error (%lx).\n", accept_status);
return (send_status | accept_status); }
extern unsigned long cpu_initialized;
static void __init do_boot_cpu (int apicid) /* * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad * (ie clustered apic addressing mode), this is a LOGICAL apic ID. */ { struct task_struct *idle; unsigned long boot_error = 0; int timeout, cpu; unsigned long start_eip; unsigned short nmi_high, nmi_low;
cpu = ++cpucount; /* * We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpu);
/* * We remove it from the pidhash and the runqueue * once we got the process: */ idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpu);
idle->processor = cpu; idle->cpus_runnable = 1 << cpu; /* we schedule the first task manually */
map_cpu_to_boot_apicid(cpu, apicid);
idle->thread.eip = (unsigned long) start_secondary;
del_from_runqueue(idle); unhash_process(idle); init_tasks[cpu] = idle;
/* start_eip had better be page-aligned! */ start_eip = setup_trampoline();
/* So we see what's up */ printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle);
/* * This grunge runs the startup process for * the targeted processor. */
atomic_set(&init_deasserted, 0);
Dprintk("Setting warm reset code and vector.\n");
if (clustered_apic_mode) { /* stash the current NMI vector, so we can put things back */ nmi_high = *((volatile unsigned short *) TRAMPOLINE_HIGH); nmi_low = *((volatile unsigned short *) TRAMPOLINE_LOW); }
CMOS_WRITE(0xa, 0xf); local_flush_tlb(); Dprintk("1.\n"); *((volatile unsigned short *) TRAMPOLINE_HIGH) = start_eip >> 4; Dprintk("2.\n"); *((volatile unsigned short *) TRAMPOLINE_LOW) = start_eip & 0xf; Dprintk("3.\n");
/* * Be paranoid about clearing APIC errors. */ if (!clustered_apic_mode && APIC_INTEGRATED(apic_version[apicid])) { apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); }
/* * Status is now clean */ boot_error = 0;
/* * Starting actual IPI sequence... */
if (clustered_apic_mode) boot_error = wakeup_secondary_via_NMI(apicid); else boot_error = wakeup_secondary_via_INIT(apicid, start_eip);
if (!boot_error) { /* * allow APs to start initializing. */ Dprintk("Before Callout %d.\n", cpu); set_bit(cpu, &cpu_callout_map); Dprintk("After Callout %d.\n", cpu);
/* * Wait 5s total for a response */ for (timeout = 0; timeout < 50000; timeout++) { if (test_bit(cpu, &cpu_callin_map)) break; /* It has booted */ udelay(100); }
if (test_bit(cpu, &cpu_callin_map)) { /* number CPUs logically, starting from 1 (BSP is 0) */ Dprintk("OK.\n"); printk("CPU%d: ", cpu); print_cpu_info(&cpu_data[cpu]); Dprintk("CPU has booted.\n"); } else { boot_error= 1; if (*((volatile unsigned char *)phys_to_virt(8192)) == 0xA5) /* trampoline started but...? */ printk("Stuck ??\n"); else /* trampoline code not run */ printk("Not responding.\n"); #if APIC_DEBUG if (!clustered_apic_mode) inquire_remote_apic(apicid); #endif } } if (boot_error) { /* Try to put things back the way they were before ... */ unmap_cpu_to_boot_apicid(cpu, apicid); clear_bit(cpu, &cpu_callout_map); /* was set here (do_boot_cpu()) */ clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */ clear_bit(cpu, &cpu_online_map); /* was set in smp_callin() */ cpucount--; }
/* mark "stuck" area as not stuck */ *((volatile unsigned long *)phys_to_virt(8192)) = 0;
if(clustered_apic_mode) { printk("Restoring NMI vector\n"); *((volatile unsigned short *) TRAMPOLINE_HIGH) = nmi_high; *((volatile unsigned short *) TRAMPOLINE_LOW) = nmi_low; } }
cycles_t cacheflush_time;
static void smp_tune_scheduling (void) { unsigned long cachesize; /* kB */ unsigned long bandwidth = 350; /* MB/s */ /* * Rough estimation for SMP scheduling, this is the number of * cycles it takes for a fully memory-limited process to flush * the SMP-local cache. * * (For a P5 this pretty much means we will choose another idle * CPU almost always at wakeup time (this is due to the small * L1 cache), on PIIs it's around 50-100 usecs, depending on * the cache size) */
if (!cpu_khz) { /* * this basically disables processor-affinity * scheduling on SMP without a TSC. */ cacheflush_time = 0; return; } else { cachesize = boot_cpu_data.x86_cache_size; if (cachesize == -1) { cachesize = 16; /* Pentiums, 2x8kB cache */ bandwidth = 100; }
cacheflush_time = (cpu_khz>>10) * (cachesize<<10) / bandwidth; }
printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n", (long)cacheflush_time/(cpu_khz/1000), ((long)cacheflush_time*100/(cpu_khz/1000)) % 100); }
/* * Cycle through the processors sending APIC IPIs to boot each. */
extern int prof_multiplier[NR_CPUS]; extern int prof_old_multiplier[NR_CPUS]; extern int prof_counter[NR_CPUS];
static int boot_cpu_logical_apicid; /* Where the IO area was mapped on multiquad, always 0 otherwise */ void *xquad_portio = NULL;
int cpu_sibling_map[NR_CPUS] __cacheline_aligned;
void __init smp_boot_cpus(void) { int apicid, cpu, bit;
if (clustered_apic_mode) { /* remap the 1st quad's 256k range for cross-quad I/O */ xquad_portio = ioremap (XQUAD_PORTIO_BASE, XQUAD_PORTIO_LEN); printk("Cross quad port I/O vaddr 0x%08lx, len %08lx\n", (u_long) xquad_portio, (u_long) XQUAD_PORTIO_LEN); }
#ifdef CONFIG_MTRR /* Must be done before other processors booted */ mtrr_init_boot_cpu (); #endif /* * Initialize the logical to physical CPU number mapping * and the per-CPU profiling counter/multiplier */
for (cpu = 0; cpu < NR_CPUS; cpu++) { prof_counter[cpu] = 1; prof_old_multiplier[cpu] = 1; prof_multiplier[cpu] = 1; }
init_cpu_to_apicid();
/* * Setup boot CPU information */ smp_store_cpu_info(0); /* Final full version of the data */ printk("CPU%d: ", 0); print_cpu_info(&cpu_data[0]);
/* * We have the boot CPU online for sure. */ set_bit(0, &cpu_online_map); boot_cpu_logical_apicid = logical_smp_processor_id(); map_cpu_to_boot_apicid(0, boot_cpu_apicid);
global_irq_holder = 0; current->processor = 0; init_idle(); smp_tune_scheduling();
/* * If we couldnt find an SMP configuration at boot time, * get out of here now! */ if (!smp_found_config) { printk(KERN_NOTICE "SMP motherboard not detected.\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = phys_cpu_present_map = 1; smp_num_cpus = 1; if (APIC_init_uniprocessor()) printk(KERN_NOTICE "Local APIC not detected." " Using dummy APIC emulation.\n"); goto smp_done; }
/* * Should not be necessary because the MP table should list the boot * CPU too, but we do it for the sake of robustness anyway. * Makes no sense to do this check in clustered apic mode, so skip it */ if (!clustered_apic_mode && !test_bit(boot_cpu_physical_apicid, &phys_cpu_present_map)) { printk("weird, boot CPU (#%d) not listed by the BIOS.\n", boot_cpu_physical_apicid); phys_cpu_present_map |= (1 << hard_smp_processor_id()); }
/* * If we couldn't find a local APIC, then get out of here now! */ if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !test_bit(X86_FEATURE_APIC, boot_cpu_data.x86_capability)) { printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", boot_cpu_physical_apicid); printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = phys_cpu_present_map = 1; smp_num_cpus = 1; goto smp_done; }
verify_local_APIC();
/* * If SMP should be disabled, then really disable it! */ if (!max_cpus) { smp_found_config = 0; printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = phys_cpu_present_map = 1; smp_num_cpus = 1; goto smp_done; }
connect_bsp_APIC(); setup_local_APIC();
if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_physical_apicid) BUG();
/* * Scan the CPU present map and fire up the other CPUs via do_boot_cpu * * In clustered apic mode, phys_cpu_present_map is a constructed thus: * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the * clustered apic ID. */ Dprintk("CPU present map: %lx\n", phys_cpu_present_map);
for (bit = 0; bit < NR_CPUS; bit++) { apicid = cpu_present_to_apicid(bit); /* * Don't even attempt to start the boot CPU! */ if (apicid == boot_cpu_apicid) continue;
if (!(phys_cpu_present_map & (1 << bit))) continue; if ((max_cpus >= 0) && (max_cpus <= cpucount+1)) continue;
do_boot_cpu(apicid);
/* * Make sure we unmap all failed CPUs */ if ((boot_apicid_to_cpu(apicid) == -1) && (phys_cpu_present_map & (1 << bit))) printk("CPU #%d not responding - cannot use it.\n", apicid); }
/* * Cleanup possible dangling ends... */ #ifndef CONFIG_VISWS { /* * Install writable page 0 entry to set BIOS data area. */ local_flush_tlb();
/* * Paranoid: Set warm reset code and vector here back * to default values. */ CMOS_WRITE(0, 0xf);
*((volatile long *) phys_to_virt(0x467)) = 0; } #endif
/* * Allow the user to impress friends. */
Dprintk("Before bogomips.\n"); if (!cpucount) { printk(KERN_ERR "Error: only one processor found.\n"); } else { unsigned long bogosum = 0; for (cpu = 0; cpu < NR_CPUS; cpu++) if (cpu_online_map & (1<<cpu)) bogosum += cpu_data[cpu].loops_per_jiffy; printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", cpucount+1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); Dprintk("Before bogocount - setting activated=1.\n"); } smp_num_cpus = cpucount + 1;
if (smp_b_stepping) printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n"); Dprintk("Boot done.\n");
/* * If Hyper-Threading is avaialble, construct cpu_sibling_map[], so * that we can tell the sibling CPU efficiently. */ if (test_bit(X86_FEATURE_HT, boot_cpu_data.x86_capability) && smp_num_siblings > 1) { for (cpu = 0; cpu < NR_CPUS; cpu++) cpu_sibling_map[cpu] = NO_PROC_ID; for (cpu = 0; cpu < smp_num_cpus; cpu++) { int i; for (i = 0; i < smp_num_cpus; i++) { if (i == cpu) continue; if (phys_proc_id[cpu] == phys_proc_id[i]) { cpu_sibling_map[cpu] = i; printk("cpu_sibling_map[%d] = %d\n", cpu, cpu_sibling_map[cpu]); break; } } if (cpu_sibling_map[cpu] == NO_PROC_ID) { smp_num_siblings = 1; printk(KERN_WARNING "WARNING: No sibling found for CPU %d.\n", cpu); } } } #ifndef CONFIG_VISWS /* * Here we can be sure that there is an IO-APIC in the system. Let's * go and set it up: */ if (!skip_ioapic_setup && nr_ioapics) setup_IO_APIC(); #endif
/* * Set up all local APIC timers in the system: */ setup_APIC_clocks();
/* * Synchronize the TSC with the AP */ if (cpu_has_tsc && cpucount) synchronize_tsc_bp();
smp_done: zap_low_mappings(); }
|