Viewing file: ethernet.c (37.63 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* $Id: ethernet.c,v 1.22 2002/01/30 07:48:22 matsfg Exp $ * * e100net.c: A network driver for the ETRAX 100LX network controller. * * Copyright (c) 1998-2001 Axis Communications AB. * * The outline of this driver comes from skeleton.c. * * $Log: ethernet.c,v $ * Revision 1.22 2002/01/30 07:48:22 matsfg * Initiate R_NETWORK_TR_CTRL * * Revision 1.21 2001/11/23 11:54:49 starvik * Added IFF_PROMISC and IFF_ALLMULTI handling in set_multicast_list * Removed compiler warnings * * Revision 1.20 2001/11/12 19:26:00 pkj * * Corrected e100_negotiate() to not assign half to current_duplex when * it was supposed to compare them... * * Cleaned up failure handling in e100_open(). * * Fixed compiler warnings. * * Revision 1.19 2001/11/09 07:43:09 starvik * Added full duplex support * Added ioctl to set speed and duplex * Clear LED timer only runs when LED is lit * * Revision 1.18 2001/10/03 14:40:43 jonashg * Update rx_bytes counter. * * Revision 1.17 2001/06/11 12:43:46 olof * Modified defines for network LED behavior * * Revision 1.16 2001/05/30 06:12:46 markusl * TxDesc.next should not be set to NULL * * Revision 1.15 2001/05/29 10:27:04 markusl * Updated after review remarks: * +Use IO_EXTRACT * +Handle underrun * * Revision 1.14 2001/05/29 09:20:14 jonashg * Use driver name on printk output so one can tell which driver that complains. * * Revision 1.13 2001/05/09 12:35:59 johana * Use DMA_NBR and IRQ_NBR defines from dma.h and irq.h * * Revision 1.12 2001/04/05 11:43:11 tobiasa * Check dev before panic. * * Revision 1.11 2001/04/04 11:21:05 markusl * Updated according to review remarks * * Revision 1.10 2001/03/26 16:03:06 bjornw * Needs linux/config.h * * Revision 1.9 2001/03/19 14:47:48 pkj * * Make sure there is always a pause after the network LEDs are * changed so they will not look constantly lit during heavy traffic. * * Always use HZ when setting times relative to jiffies. * * Use LED_NETWORK_SET() when setting the network LEDs. * * Revision 1.8 2001/02/27 13:52:48 bjornw * malloc.h -> slab.h * * Revision 1.7 2001/02/23 13:46:38 bjornw * Spellling check * * Revision 1.6 2001/01/26 15:21:04 starvik * Don't disable interrupts while reading MDIO registers (MDIO is slow) * Corrected promiscuous mode * Improved deallocation of IRQs ("ifconfig eth0 down" now works) * * Revision 1.5 2000/11/29 17:22:22 bjornw * Get rid of the udword types legacy stuff * * Revision 1.4 2000/11/22 16:36:09 bjornw * Please marketing by using the correct case when spelling Etrax. * * Revision 1.3 2000/11/21 16:43:04 bjornw * Minor short->int change * * Revision 1.2 2000/11/08 14:27:57 bjornw * 2.4 port * * Revision 1.1 2000/11/06 13:56:00 bjornw * Verbatim copy of the 1.24 version of e100net.c from elinux * * Revision 1.24 2000/10/04 15:55:23 bjornw * * Use virt_to_phys etc. for DMA addresses * * Removed bogus CHECKSUM_UNNECESSARY * * */
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/init.h>
#include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h>
#include <asm/svinto.h> /* DMA and register descriptions */ #include <asm/io.h> /* LED_* I/O functions */ #include <asm/irq.h> #include <asm/dma.h> #include <asm/system.h> #include <asm/bitops.h> #include <asm/ethernet.h>
//#define ETHDEBUG #define D(x)
/* * The name of the card. Is used for messages and in the requests for * io regions, irqs and dma channels */
static const char* cardname = "ETRAX 100LX built-in ethernet controller";
/* A default ethernet address. Highlevel SW will set the real one later */
static struct sockaddr default_mac = { 0, { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 } };
/* Information that need to be kept for each board. */ struct net_local { struct net_device_stats stats;
/* Tx control lock. This protects the transmit buffer ring * state along with the "tx full" state of the driver. This * means all netif_queue flow control actions are protected * by this lock as well. */ spinlock_t lock; };
/* Duplex settings */ enum duplex { half, full, autoneg };
/* Dma descriptors etc. */
#define RX_BUF_SIZE 32768
#define MAX_MEDIA_DATA_SIZE 1518
#define MIN_PACKET_LEN 46 #define ETHER_HEAD_LEN 14
/* ** MDIO constants. */ #define MDIO_BASE_STATUS_REG 0x1 #define MDIO_BASE_CONTROL_REG 0x0 #define MDIO_BC_NEGOTIATE 0x0200 #define MDIO_BC_FULL_DUPLEX_MASK 0x0100 #define MDIO_BC_AUTO_NEG_MASK 0x1000 #define MDIO_BC_SPEED_SELECT_MASK 0x2000 #define MDIO_ADVERTISMENT_REG 0x4 #define MDIO_ADVERT_100_FD 0x100 #define MDIO_ADVERT_100_HD 0x080 #define MDIO_ADVERT_10_FD 0x040 #define MDIO_ADVERT_10_HD 0x020 #define MDIO_LINK_UP_MASK 0x4 #define MDIO_START 0x1 #define MDIO_READ 0x2 #define MDIO_WRITE 0x1 #define MDIO_PREAMBLE 0xfffffffful
/* Broadcom specific */ #define MDIO_AUX_CTRL_STATUS_REG 0x18 #define MDIO_FULL_DUPLEX_IND 0x1 #define MDIO_SPEED 0x2 #define MDIO_PHYS_ADDR 0x0
/* Network flash constants */ #define NET_FLASH_TIME (HZ/50) /* 20 ms */ #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */ #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */ #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
#define NO_NETWORK_ACTIVITY 0 #define NETWORK_ACTIVITY 1
#define RX_DESC_BUF_SIZE 256 #define NBR_OF_RX_DESC (RX_BUF_SIZE / \ RX_DESC_BUF_SIZE)
#define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
/* Define some macros to access ETRAX 100 registers */ #define SETF(var, reg, field, val) var = (var & ~IO_MASK(##reg##, field)) | \ IO_FIELD(##reg##, field, val) #define SETS(var, reg, field, val) var = (var & ~IO_MASK(##reg##, field)) | \ IO_STATE(##reg##, field, val)
static etrax_dma_descr *myNextRxDesc; /* Points to the next descriptor to to be processed */ static etrax_dma_descr *myLastRxDesc; /* The last processed descriptor */ static etrax_dma_descr *myPrevRxDesc; /* The descriptor right before myNextRxDesc */
static unsigned char RxBuf[RX_BUF_SIZE];
static etrax_dma_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(4))); static etrax_dma_descr TxDesc __attribute__ ((aligned(4)));
static struct sk_buff *tx_skb;
static unsigned int network_rec_config_shadow = 0;
/* Network speed indication. */ static struct timer_list speed_timer; static struct timer_list clear_led_timer; static int current_speed; /* Speed read from tranceiver */ static int current_speed_selection; /* Speed selected by user */ static int led_next_time; static int led_active;
/* Duplex */ static struct timer_list duplex_timer; static int full_duplex; static enum duplex current_duplex;
/* Index to functions, as function prototypes. */
static int etrax_ethernet_init(struct net_device *dev);
static int e100_open(struct net_device *dev); static int e100_set_mac_address(struct net_device *dev, void *addr); static int e100_send_packet(struct sk_buff *skb, struct net_device *dev); static void e100rx_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100tx_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100nw_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void e100_rx(struct net_device *dev); static int e100_close(struct net_device *dev); static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); static void e100_tx_timeout(struct net_device *dev); static struct net_device_stats *e100_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); static void e100_hardware_send_packet(char *buf, int length); static void update_rx_stats(struct net_device_stats *); static void update_tx_stats(struct net_device_stats *);
static void e100_check_speed(unsigned long dummy); static void e100_set_speed(unsigned long speed); static void e100_check_duplex(unsigned long dummy); static void e100_set_duplex(enum duplex); static void e100_negotiate(void);
static unsigned short e100_get_mdio_reg(unsigned char reg_num); static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd); static void e100_send_mdio_bit(unsigned char bit); static unsigned char e100_receive_mdio_bit(void); static void e100_reset_tranceiver(void);
static void e100_clear_network_leds(unsigned long dummy); static void e100_set_network_leds(int active);
#define tx_done(dev) (*R_DMA_CH0_CMD == 0)
/* * Check for a network adaptor of this type, and return '0' if one exists. * If dev->base_addr == 0, probe all likely locations. * If dev->base_addr == 1, always return failure. * If dev->base_addr == 2, allocate space for the device and return success * (detachable devices only). */
static int __init etrax_ethernet_init(struct net_device *dev) { int i; int anOffset = 0;
printk("ETRAX 100LX 10/100MBit ethernet v2.0 (c) 2000-2001 Axis Communications AB\n");
dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
printk("%s initialized\n", dev->name);
/* make Linux aware of the new hardware */
if (!dev) { printk(KERN_WARNING "%s: dev == NULL. Should this happen?\n", cardname); dev = init_etherdev(dev, sizeof(struct net_local)); if (!dev) panic("init_etherdev failed\n"); }
/* setup generic handlers and stuff in the dev struct */
ether_setup(dev);
/* make room for the local structure containing stats etc */
dev->priv = kmalloc(sizeof(struct net_local), GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; memset(dev->priv, 0, sizeof(struct net_local));
/* now setup our etrax specific stuff */
dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */ dev->dma = NETWORK_RX_DMA_NBR;
/* fill in our handlers so the network layer can talk to us in the future */
dev->open = e100_open; dev->hard_start_xmit = e100_send_packet; dev->stop = e100_close; dev->get_stats = e100_get_stats; dev->set_multicast_list = set_multicast_list; dev->set_mac_address = e100_set_mac_address; dev->do_ioctl = e100_ioctl; dev->tx_timeout = e100_tx_timeout;
/* set the default MAC address */
e100_set_mac_address(dev, &default_mac);
/* Initialise the list of Etrax DMA-descriptors */
/* Initialise receive descriptors */
for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) { RxDescList[i].ctrl = 0; RxDescList[i].sw_len = RX_DESC_BUF_SIZE; RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); RxDescList[i].buf = virt_to_phys(RxBuf + anOffset); RxDescList[i].status = 0; RxDescList[i].hw_len = 0; anOffset += RX_DESC_BUF_SIZE; }
RxDescList[i].ctrl = d_eol; RxDescList[i].sw_len = RX_DESC_BUF_SIZE; RxDescList[i].next = virt_to_phys(&RxDescList[0]); RxDescList[i].buf = virt_to_phys(RxBuf + anOffset); RxDescList[i].status = 0; RxDescList[i].hw_len = 0;
/* Initialise initial pointers */
myNextRxDesc = &RxDescList[0]; myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
/* Initialize speed indicator stuff. */
current_speed = 10; current_speed_selection = 0; /* Auto */ speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL; speed_timer.function = e100_check_speed; add_timer(&speed_timer); clear_led_timer.function = e100_clear_network_leds; full_duplex = 0; current_duplex = autoneg; duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL; duplex_timer.function = e100_check_duplex; add_timer(&duplex_timer);
return 0; }
/* set MAC address of the interface. called from the core after a * SIOCSIFADDR ioctl, and from the bootup above. */
static int e100_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr = p; int i;
/* remember it */
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
/* Write it to the hardware. * Note the way the address is wrapped: * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24); * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8); */ *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24); *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8); *R_NETWORK_SA_2 = 0;
/* show it in the log as well */
printk("%s: changed MAC to ", dev->name);
for (i = 0; i < 5; i++) printk("%02X:", dev->dev_addr[i]);
printk("%02X\n", dev->dev_addr[i]);
return 0; }
/* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */
static int e100_open(struct net_device *dev) { unsigned long flags;
/* disable the ethernet interface while we configure it */
*R_NETWORK_GEN_CONFIG = IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) | IO_STATE(R_NETWORK_GEN_CONFIG, enable, off);
/* enable the MDIO output pin */
*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
*R_IRQ_MASK0_CLR = IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr); /* clear dma0 and 1 eop and descr irq masks */ *R_IRQ_MASK2_CLR = IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
/* Reset and wait for the DMA channels */
RESET_DMA(NETWORK_TX_DMA_NBR); RESET_DMA(NETWORK_RX_DMA_NBR); WAIT_DMA(NETWORK_TX_DMA_NBR); WAIT_DMA(NETWORK_RX_DMA_NBR);
/* Initialise the etrax network controller */
/* allocate the irq corresponding to the receiving DMA */
if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rx_interrupt, 0, cardname, (void *)dev)) { goto grace_exit0; }
/* allocate the irq corresponding to the transmitting DMA */
if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100tx_interrupt, 0, cardname, (void *)dev)) { goto grace_exit1; }
/* allocate the irq corresponding to the network errors etc */
if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0, cardname, (void *)dev)) { goto grace_exit2; }
/* * Always allocate the DMA channels after the IRQ, * and clean up on failure. */
if (request_dma(NETWORK_TX_DMA_NBR, cardname)) { goto grace_exit3; }
if (request_dma(NETWORK_RX_DMA_NBR, cardname)) { goto grace_exit4; }
/* give the HW an idea of what MAC address we want */
*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24); *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8); *R_NETWORK_SA_2 = 0;
#if 0 /* use promiscuous mode for testing */ *R_NETWORK_GA_0 = 0xffffffff; *R_NETWORK_GA_1 = 0xffffffff;
*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */ #else SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive); SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable); SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex); *R_NETWORK_REC_CONFIG = network_rec_config_shadow; #endif
*R_NETWORK_GEN_CONFIG = IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) | IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
*R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr) | IO_STATE(R_NETWORK_TR_CTRL, delay, none) | IO_STATE(R_NETWORK_TR_CTRL, cancel, dont) | IO_STATE(R_NETWORK_TR_CTRL, cd, enable) | IO_STATE(R_NETWORK_TR_CTRL, retry, enable) | IO_STATE(R_NETWORK_TR_CTRL, pad, enable) | IO_STATE(R_NETWORK_TR_CTRL, crc, enable);
save_flags(flags); cli();
/* enable the irq's for ethernet DMA */
*R_IRQ_MASK2_SET = IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) | IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
*R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, overrun, set) | IO_STATE(R_IRQ_MASK0_SET, underrun, set) | IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
tx_skb = 0;
/* make sure the irqs are cleared */
*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do); *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
/* make sure the rec and transmit error counters are cleared */
(void)*R_REC_COUNTERS; /* dummy read */ (void)*R_TR_COUNTERS; /* dummy read */
/* start the receiving DMA channel so we can receive packets from now on */
*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc); *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
restore_flags(flags); /* We are now ready to accept transmit requeusts from * the queueing layer of the networking. */ netif_start_queue(dev);
return 0;
grace_exit4: free_dma(NETWORK_TX_DMA_NBR); grace_exit3: free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev); grace_exit2: free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev); grace_exit1: free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev); grace_exit0: return -EAGAIN; }
static void e100_check_speed(unsigned long dummy) { unsigned long data; int old_speed = current_speed;
data = e100_get_mdio_reg(MDIO_BASE_STATUS_REG); if (!(data & MDIO_LINK_UP_MASK)) { current_speed = 0; } else { data = e100_get_mdio_reg(MDIO_AUX_CTRL_STATUS_REG); current_speed = (data & MDIO_SPEED ? 100 : 10); } if (old_speed != current_speed) e100_set_network_leds(NO_NETWORK_ACTIVITY);
/* Reinitialize the timer. */ speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL; add_timer(&speed_timer); }
static void e100_negotiate(void) { unsigned short cmd; unsigned short data = e100_get_mdio_reg(MDIO_ADVERTISMENT_REG); int bitCounter;
/* Discard old speed and duplex settings */ data &= ~(MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD); switch (current_speed_selection) { case 10 : if (current_duplex == full) data |= MDIO_ADVERT_10_FD; else if (current_duplex == half) data |= MDIO_ADVERT_10_HD; else data |= MDIO_ADVERT_10_HD | MDIO_ADVERT_10_FD; break;
case 100 : if (current_duplex == full) data |= MDIO_ADVERT_100_FD; else if (current_duplex == half) data |= MDIO_ADVERT_100_HD; else data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD; break;
case 0 : /* Auto */ if (current_duplex == full) data |= MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD; else if (current_duplex == half) data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_10_HD; else data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD; break;
default : /* assume autoneg speed and duplex */ data |= MDIO_ADVERT_100_HD | MDIO_ADVERT_100_FD | MDIO_ADVERT_10_FD | MDIO_ADVERT_10_HD; }
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (MDIO_PHYS_ADDR << 7) | (MDIO_ADVERTISMENT_REG<< 2);
e100_send_mdio_cmd(cmd, 1);
/* Data... */ for (bitCounter=15; bitCounter>=0 ; bitCounter--) { e100_send_mdio_bit(GET_BIT(bitCounter, data)); }
/* Renegotiate with link partner */ data = e100_get_mdio_reg(MDIO_BASE_CONTROL_REG); data |= MDIO_BC_NEGOTIATE;
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (MDIO_PHYS_ADDR << 7) | (MDIO_BASE_CONTROL_REG<< 2);
e100_send_mdio_cmd(cmd, 1);
/* Data... */ for (bitCounter=15; bitCounter>=0 ; bitCounter--) { e100_send_mdio_bit(GET_BIT(bitCounter, data)); } }
static void e100_set_speed(unsigned long speed) { current_speed_selection = speed; e100_negotiate(); }
static void e100_check_duplex(unsigned long dummy) { unsigned long data;
data = e100_get_mdio_reg(MDIO_AUX_CTRL_STATUS_REG); if (data & MDIO_FULL_DUPLEX_IND) { if (!full_duplex) { /* Duplex changed to full? */ full_duplex = 1; SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex); *R_NETWORK_REC_CONFIG = network_rec_config_shadow; } } else { /* half */ if (full_duplex) { /* Duplex changed to half? */ full_duplex = 0; SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex); *R_NETWORK_REC_CONFIG = network_rec_config_shadow; } }
/* Reinitialize the timer. */ duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL; add_timer(&duplex_timer); }
static void e100_set_duplex(enum duplex new_duplex) { current_duplex = new_duplex; e100_negotiate(); }
static unsigned short e100_get_mdio_reg(unsigned char reg_num) { unsigned short cmd; /* Data to be sent on MDIO port */ unsigned short data; /* Data read from MDIO */ int bitCounter; /* Start of frame, OP Code, Physical Address, Register Address */ cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (MDIO_PHYS_ADDR << 7) | (reg_num << 2); e100_send_mdio_cmd(cmd, 0); data = 0; /* Data... */ for (bitCounter=15; bitCounter>=0 ; bitCounter--) { data |= (e100_receive_mdio_bit() << bitCounter); }
return data; }
static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd) { int bitCounter; unsigned char data = 0x2; /* Preamble */ for (bitCounter = 31; bitCounter>= 0; bitCounter--) e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
for (bitCounter = 15; bitCounter >= 2; bitCounter--) e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
/* Turnaround */ for (bitCounter = 1; bitCounter >= 0 ; bitCounter--) if (write_cmd) e100_send_mdio_bit(GET_BIT(bitCounter, data)); else e100_receive_mdio_bit(); }
static void e100_send_mdio_bit(unsigned char bit) { *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) | IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit); udelay(1); *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) | IO_MASK(R_NETWORK_MGM_CTRL, mdck) | IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit); udelay(1); }
static unsigned char e100_receive_mdio_bit() { unsigned char bit; *R_NETWORK_MGM_CTRL = 0; bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT); udelay(1); *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck); udelay(1); return bit; }
static void e100_reset_tranceiver(void) { unsigned short cmd; unsigned short data; int bitCounter;
data = e100_get_mdio_reg(MDIO_BASE_CONTROL_REG);
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (MDIO_PHYS_ADDR << 7) | (MDIO_BASE_CONTROL_REG << 2);
e100_send_mdio_cmd(cmd, 1); data |= 0x8000; for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) { e100_send_mdio_bit(GET_BIT(bitCounter, data)); } }
/* Called by upper layers if they decide it took too long to complete * sending a packet - we need to reset and stuff. */
static void e100_tx_timeout(struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv;
printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name, tx_done(dev) ? "IRQ problem" : "network cable problem"); /* remember we got an error */ np->stats.tx_errors++; /* reset the TX DMA in case it has hung on something */ RESET_DMA(NETWORK_TX_DMA_NBR); WAIT_DMA(NETWORK_TX_DMA_NBR); /* Reset the tranceiver. */ e100_reset_tranceiver(); /* and get rid of the packet that never got an interrupt */ dev_kfree_skb(tx_skb); tx_skb = 0; /* tell the upper layers we're ok again */ netif_wake_queue(dev); }
/* This will only be invoked if the driver is _not_ in XOFF state. * What this means is that we need not check it, and that this * invariant will hold if we make sure that the netif_*_queue() * calls are done at the proper times. */
static int e100_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv; int length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; unsigned char *buf = skb->data; #ifdef ETHDEBUG printk("send packet len %d\n", length); #endif spin_lock_irq(&np->lock); /* protect from tx_interrupt */
tx_skb = skb; /* remember it so we can free it in the tx irq handler later */ dev->trans_start = jiffies; e100_hardware_send_packet(buf, length);
/* this simple TX driver has only one send-descriptor so we're full * directly. If this had a send-ring instead, we would only do this if * the ring got full. */
netif_stop_queue(dev);
spin_unlock_irq(&np->lock);
return 0; }
/* * The typical workload of the driver: * Handle the network interface interrupts. */
static void e100rx_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; unsigned long irqbits = *R_IRQ_MASK2_RD; if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) { /* acknowledge the eop interrupt */
*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
/* check if one or more complete packets were indeed received */
while (*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) { /* Take out the buffer and give it to the OS, then * allocate a new buffer to put a packet in. */ e100_rx(dev); ((struct net_local *)dev->priv)->stats.rx_packets++; /* restart/continue on the channel, for safety */ *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart); /* clear dma channel 1 eop/descr irq bits */ *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) | IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do); /* now, we might have gotten another packet so we have to loop back and check if so */ } } }
/* the transmit dma channel interrupt * * this is supposed to free the skbuff which was pending during transmission, * and inform the kernel that we can send one more buffer */
static void e100tx_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; unsigned long irqbits = *R_IRQ_MASK2_RD; struct net_local *np = (struct net_local *)dev->priv;
/* check for a dma0_eop interrupt */ if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) { /* This protects us from concurrent execution of * our dev->hard_start_xmit function above. */
spin_lock(&np->lock); /* acknowledge the eop interrupt */
*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
if (*R_DMA_CH0_FIRST == 0 && tx_skb) { np->stats.tx_bytes += tx_skb->len; np->stats.tx_packets++; /* dma is ready with the transmission of the data in tx_skb, so now we can release the skb memory */ dev_kfree_skb_irq(tx_skb); tx_skb = 0; netif_wake_queue(dev); } else { printk(KERN_WARNING "%s: tx weird interrupt\n", cardname); }
spin_unlock(&np->lock); } }
static void e100nw_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = (struct net_device *)dev_id; struct net_local *np = (struct net_local *)dev->priv; unsigned long irqbits = *R_IRQ_MASK0_RD;
/* check for underrun irq */ if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) { *R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr); np->stats.tx_errors++; D(printk("ethernet receiver underrun!\n")); }
/* check for overrun irq */ if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) { update_rx_stats(&np->stats); /* this will ack the irq */ D(printk("ethernet receiver overrun!\n")); } /* check for excessive collision irq */ if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) { *R_NETWORK_TR_CTRL = IO_STATE(R_NETWORK_TR_CTRL, clr_error, clr); np->stats.tx_errors++; D(printk("ethernet excessive collisions!\n")); }
}
/* We have a good packet(s), get it/them out of the buffers. */ static void e100_rx(struct net_device *dev) { struct sk_buff *skb; int length = 0; struct net_local *np = (struct net_local *)dev->priv; struct etrax_dma_descr *mySaveRxDesc = myNextRxDesc; unsigned char *skb_data_ptr; #ifdef ETHDEBUG int i; #endif
if (!led_active && jiffies > led_next_time) { /* light the network leds depending on the current speed. */ e100_set_network_leds(NETWORK_ACTIVITY);
/* Set the earliest time we may clear the LED */ led_next_time = jiffies + NET_FLASH_TIME; led_active = 1; mod_timer(&clear_led_timer, jiffies + HZ/10); }
/* If the packet is broken down in many small packages then merge * count how much space we will need to alloc with skb_alloc() for * it to fit. */
while (!(myNextRxDesc->status & d_eop)) { length += myNextRxDesc->sw_len; /* use sw_len for the first descs */ myNextRxDesc->status = 0; myNextRxDesc = phys_to_virt(myNextRxDesc->next); }
length += myNextRxDesc->hw_len; /* use hw_len for the last descr */ ((struct net_local *)dev->priv)->stats.rx_bytes += length;
#ifdef ETHDEBUG printk("Got a packet of length %d:\n", length); /* dump the first bytes in the packet */ skb_data_ptr = (unsigned char *)phys_to_virt(mySaveRxDesc->buf); for (i = 0; i < 8; i++) { printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8, skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3], skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]); skb_data_ptr += 8; } #endif
skb = dev_alloc_skb(length - ETHER_HEAD_LEN); if (!skb) { np->stats.rx_errors++; printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); return; }
skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */ skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
#ifdef ETHDEBUG printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n", skb->head, skb->data, skb->tail, skb->end); printk("copying packet to 0x%x.\n", skb_data_ptr); #endif
/* this loop can be made using max two memcpy's if optimized */
while (mySaveRxDesc != myNextRxDesc) { memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf), mySaveRxDesc->sw_len); skb_data_ptr += mySaveRxDesc->sw_len; mySaveRxDesc = phys_to_virt(mySaveRxDesc->next); }
memcpy(skb_data_ptr, phys_to_virt(mySaveRxDesc->buf), mySaveRxDesc->hw_len);
skb->dev = dev; skb->protocol = eth_type_trans(skb, dev);
/* Send the packet to the upper layers */
netif_rx(skb);
/* Prepare for next packet */
myNextRxDesc->status = 0; myPrevRxDesc = myNextRxDesc; myNextRxDesc = phys_to_virt(myNextRxDesc->next);
myPrevRxDesc->ctrl |= d_eol; myLastRxDesc->ctrl &= ~d_eol; myLastRxDesc = myPrevRxDesc;
return; }
/* The inverse routine to net_open(). */ static int e100_close(struct net_device *dev) { struct net_local *np = (struct net_local *)dev->priv;
printk("Closing %s.\n", dev->name);
netif_stop_queue(dev);
*R_NETWORK_GEN_CONFIG = IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) | IO_STATE(R_NETWORK_GEN_CONFIG, enable, off); *R_IRQ_MASK0_CLR = IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) | IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr); *R_IRQ_MASK2_CLR = IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) | IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
/* Stop the receiver and the transmitter */
RESET_DMA(NETWORK_TX_DMA_NBR); RESET_DMA(NETWORK_RX_DMA_NBR);
/* Flush the Tx and disable Rx here. */
free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev); free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev); free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
free_dma(NETWORK_TX_DMA_NBR); free_dma(NETWORK_RX_DMA_NBR);
/* Update the statistics here. */
update_rx_stats(&np->stats); update_tx_stats(&np->stats);
return 0; }
static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { /* Maybe default should return -EINVAL instead? */ switch (cmd) { case SET_ETH_SPEED_10: /* 10 Mbps */ e100_set_speed(10); break; case SET_ETH_SPEED_100: /* 100 Mbps */ e100_set_speed(100); break; case SET_ETH_SPEED_AUTO: /* Auto negotiate speed */ e100_set_speed(0); break; case SET_ETH_DUPLEX_HALF: /* Hhalf duplex. */ e100_set_duplex(half); break; case SET_ETH_DUPLEX_FULL: /* Full duplex. */ e100_set_duplex(full); break; case SET_ETH_DUPLEX_AUTO: /* Autonegotiate duplex*/ e100_set_duplex(autoneg); break; default: /* Auto neg */ e100_set_speed(0); e100_set_duplex(autoneg); break; } return 0; }
static void update_rx_stats(struct net_device_stats *es) { unsigned long r = *R_REC_COUNTERS; /* update stats relevant to reception errors */ es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r); es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r); es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r); es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r); }
static void update_tx_stats(struct net_device_stats *es) { unsigned long r = *R_TR_COUNTERS; /* update stats relevant to transmission errors */ es->collisions += IO_EXTRACT(R_TR_COUNTERS, single_col, r) + IO_EXTRACT(R_TR_COUNTERS, multiple_col, r); es->tx_errors += IO_EXTRACT(R_TR_COUNTERS, deferred, r); }
/* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats * e100_get_stats(struct net_device *dev) { struct net_local *lp = (struct net_local *)dev->priv;
update_rx_stats(&lp->stats); update_tx_stats(&lp->stats);
return &lp->stats; }
/* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void set_multicast_list(struct net_device *dev) { int num_addr = dev->mc_count; unsigned long int lo_bits; unsigned long int hi_bits; if (dev->flags & IFF_PROMISC) { /* promiscuous mode */ lo_bits = 0xfffffffful; hi_bits = 0xfffffffful;
/* Enable individual receive */ SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive); *R_NETWORK_REC_CONFIG = network_rec_config_shadow; } else if (dev->flags & IFF_ALLMULTI) { /* enable all multicasts */ lo_bits = 0xfffffffful; hi_bits = 0xfffffffful;
/* Disable individual receive */ SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard); *R_NETWORK_REC_CONFIG = network_rec_config_shadow; } else if (num_addr == 0) { /* Normal, clear the mc list */ lo_bits = 0x00000000ul; hi_bits = 0x00000000ul;
/* Disable individual receive */ SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard); *R_NETWORK_REC_CONFIG = network_rec_config_shadow; } else { /* MC mode, receive normal and MC packets */ char hash_ix; struct dev_mc_list *dmi = dev->mc_list; int i; char *baddr; lo_bits = 0x00000000ul; hi_bits = 0x00000000ul; for (i=0; i<num_addr; i++) { /* Calculate the hash index for the GA registers */ hash_ix = 0; baddr = dmi->dmi_addr; hash_ix ^= (*baddr) & 0x3f; hash_ix ^= ((*baddr) >> 6) & 0x03; ++baddr; hash_ix ^= ((*baddr) << 2) & 0x03c; hash_ix ^= ((*baddr) >> 4) & 0xf; ++baddr; hash_ix ^= ((*baddr) << 4) & 0x30; hash_ix ^= ((*baddr) >> 2) & 0x3f; ++baddr; hash_ix ^= (*baddr) & 0x3f; hash_ix ^= ((*baddr) >> 6) & 0x03; ++baddr; hash_ix ^= ((*baddr) << 2) & 0x03c; hash_ix ^= ((*baddr) >> 4) & 0xf; ++baddr; hash_ix ^= ((*baddr) << 4) & 0x30; hash_ix ^= ((*baddr) >> 2) & 0x3f; hash_ix &= 0x3f; if (hash_ix > 32) { hi_bits |= (1 << (hash_ix-32)); } else { lo_bits |= (1 << hash_ix); } dmi = dmi->next; } /* Disable individual receive */ SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard); *R_NETWORK_REC_CONFIG = network_rec_config_shadow; } *R_NETWORK_GA_0 = lo_bits; *R_NETWORK_GA_1 = hi_bits; }
void e100_hardware_send_packet(char *buf, int length) { D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
if (!led_active && jiffies > led_next_time) { /* light the network leds depending on the current speed. */ e100_set_network_leds(NETWORK_ACTIVITY);
/* Set the earliest time we may clear the LED */ led_next_time = jiffies + NET_FLASH_TIME; led_active = 1; mod_timer(&clear_led_timer, jiffies + HZ/10); }
/* configure the tx dma descriptor */
TxDesc.sw_len = length; TxDesc.ctrl = d_eop | d_eol | d_wait; TxDesc.buf = virt_to_phys(buf);
/* setup the dma channel and start it */
*R_DMA_CH0_FIRST = virt_to_phys(&TxDesc); *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, start); }
static void e100_clear_network_leds(unsigned long dummy) { if (led_active && jiffies > led_next_time) { e100_set_network_leds(NO_NETWORK_ACTIVITY);
/* Set the earliest time we may set the LED */ led_next_time = jiffies + NET_FLASH_PAUSE; led_active = 0; } }
static void e100_set_network_leds(int active) { #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK) int light_leds = (active == NO_NETWORK_ACTIVITY); #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY) int light_leds = (active == NETWORK_ACTIVITY); #else #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY" #endif
if (!current_speed) { /* Make LED red, link is down */ LED_NETWORK_SET(LED_RED); } else if (light_leds) { if (current_speed == 10) { LED_NETWORK_SET(LED_ORANGE); } else { LED_NETWORK_SET(LED_GREEN); } } else { LED_NETWORK_SET(LED_OFF); } }
static struct net_device dev_etrax_ethernet; /* only got one */
static int etrax_init_module(void) { struct net_device *d = &dev_etrax_ethernet;
d->init = etrax_ethernet_init;
if (register_netdev(d) == 0) return 0; else return -ENODEV; }
module_init(etrax_init_module);
|