Viewing file: pcipool.c (9.59 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* NOTE:
this code was lifted straight out of drivers/pci/pci.c; when compiling for the Intel StrongARM SA-1110/SA-1111 the usb-ohci.c driver needs these routines even when the architecture has no pci bus... */
#include <linux/config.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/pci.h> #include <linux/string.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/bitops.h>
#include <asm/page.h>
#include "pcipool.h"
/* * Pool allocator ... wraps the pci_alloc_consistent page allocator, so * small blocks are easily used by drivers for bus mastering controllers. * This should probably be sharing the guts of the slab allocator. */
struct pci_pool { /* the pool */ struct list_head page_list; spinlock_t lock; size_t blocks_per_page; size_t size; int flags; struct pci_dev *dev; size_t allocation; char name [32]; wait_queue_head_t waitq; };
struct pci_page { /* cacheable header for 'allocation' bytes */ struct list_head page_list; void *vaddr; dma_addr_t dma; unsigned long bitmap [0]; };
#define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000) #define POOL_POISON_BYTE 0xa7
// #define CONFIG_PCIPOOL_DEBUG
/** * pci_pool_create - Creates a pool of pci consistent memory blocks, for dma. * @name: name of pool, for diagnostics * @pdev: pci device that will be doing the DMA * @size: size of the blocks in this pool. * @align: alignment requirement for blocks; must be a power of two * @allocation: returned blocks won't cross this boundary (or zero) * @flags: SLAB_* flags (not all are supported). * * Returns a pci allocation pool with the requested characteristics, or * null if one can't be created. Given one of these pools, pci_pool_alloc() * may be used to allocate memory. Such memory will all have "consistent" * DMA mappings, accessible by the device and its driver without using * cache flushing primitives. The actual size of blocks allocated may be * larger than requested because of alignment. * * If allocation is nonzero, objects returned from pci_pool_alloc() won't * cross that size boundary. This is useful for devices which have * addressing restrictions on individual DMA transfers, such as not crossing * boundaries of 4KBytes. */ struct pci_pool * pci_pool_create (const char *name, struct pci_dev *pdev, size_t size, size_t align, size_t allocation, int flags) { struct pci_pool *retval;
if (align == 0) align = 1; if (size == 0) return 0; else if (size < align) size = align; else if ((size % align) != 0) { size += align + 1; size &= ~(align - 1); }
if (allocation == 0) { if (PAGE_SIZE < size) allocation = size; else allocation = PAGE_SIZE; // FIXME: round up for less fragmentation } else if (allocation < size) return 0;
if (!(retval = kmalloc (sizeof *retval, flags))) return retval;
#ifdef CONFIG_PCIPOOL_DEBUG flags |= SLAB_POISON; #endif
strncpy (retval->name, name, sizeof retval->name); retval->name [sizeof retval->name - 1] = 0;
retval->dev = pdev; INIT_LIST_HEAD (&retval->page_list); spin_lock_init (&retval->lock); retval->size = size; retval->flags = flags; retval->allocation = allocation; retval->blocks_per_page = allocation / size; init_waitqueue_head (&retval->waitq);
#ifdef CONFIG_PCIPOOL_DEBUG printk (KERN_DEBUG "pcipool create %s/%s size %d, %d/page (%d alloc)\n", pdev ? pdev->slot_name : NULL, retval->name, size, retval->blocks_per_page, allocation); #endif
return retval; }
static struct pci_page * pool_alloc_page (struct pci_pool *pool, int mem_flags) { struct pci_page *page; int mapsize;
mapsize = pool->blocks_per_page; mapsize = (mapsize + BITS_PER_LONG - 1) / BITS_PER_LONG; mapsize *= sizeof (long);
page = (struct pci_page *) kmalloc (mapsize + sizeof *page, mem_flags); if (!page) return 0; page->vaddr = pci_alloc_consistent (pool->dev, pool->allocation, &page->dma); if (page->vaddr) { memset (page->bitmap, 0xff, mapsize); // bit set == free if (pool->flags & SLAB_POISON) memset (page->vaddr, POOL_POISON_BYTE, pool->allocation); list_add (&page->page_list, &pool->page_list); } else { kfree (page); page = 0; } return page; }
static inline int is_page_busy (int blocks, unsigned long *bitmap) { while (blocks > 0) { if (*bitmap++ != ~0UL) return 1; blocks -= BITS_PER_LONG; } return 0; }
static void pool_free_page (struct pci_pool *pool, struct pci_page *page) { dma_addr_t dma = page->dma;
if (pool->flags & SLAB_POISON) memset (page->vaddr, POOL_POISON_BYTE, pool->allocation); pci_free_consistent (pool->dev, pool->allocation, page->vaddr, dma); list_del (&page->page_list); kfree (page); }
/** * pci_pool_destroy - destroys a pool of pci memory blocks. * @pool: pci pool that will be destroyed * * Caller guarantees that no more memory from the pool is in use, * and that nothing will try to use the pool after this call. */ void pci_pool_destroy (struct pci_pool *pool) { unsigned long flags;
#ifdef CONFIG_PCIPOOL_DEBUG printk (KERN_DEBUG "pcipool destroy %s/%s\n", pool->dev ? pool->dev->slot_name : NULL, pool->name); #endif
spin_lock_irqsave (&pool->lock, flags); while (!list_empty (&pool->page_list)) { struct pci_page *page; page = list_entry (pool->page_list.next, struct pci_page, page_list); if (is_page_busy (pool->blocks_per_page, page->bitmap)) { printk (KERN_ERR "pci_pool_destroy %s/%s, %p busy\n", pool->dev ? pool->dev->slot_name : NULL, pool->name, page->vaddr); /* leak the still-in-use consistent memory */ list_del (&page->page_list); kfree (page); } else pool_free_page (pool, page); } spin_unlock_irqrestore (&pool->lock, flags); kfree (pool); }
/** * pci_pool_alloc - get a block of consistent memory * @pool: pci pool that will produce the block * @mem_flags: SLAB_KERNEL or SLAB_ATOMIC * @handle: pointer to dma address of block * * This returns the kernel virtual address of a currently unused block, * and reports its dma address through the handle. * If such a memory block can't be allocated, null is returned. */ void * pci_pool_alloc (struct pci_pool *pool, int mem_flags, dma_addr_t *handle) { unsigned long flags; struct list_head *entry; struct pci_page *page; int map, block; size_t offset; void *retval;
restart: spin_lock_irqsave (&pool->lock, flags); list_for_each (entry, &pool->page_list) { int i; page = list_entry (entry, struct pci_page, page_list); /* only cachable accesses here ... */ for (map = 0, i = 0; i < pool->blocks_per_page; i += BITS_PER_LONG, map++) { if (page->bitmap [map] == 0) continue; block = ffz (~ page->bitmap [map]); if ((i + block) < pool->blocks_per_page) { clear_bit (block, &page->bitmap [map]); offset = (BITS_PER_LONG * map) + block; offset *= pool->size; goto ready; } } } if (!(page = pool_alloc_page (pool, mem_flags))) { if (mem_flags == SLAB_KERNEL) { DECLARE_WAITQUEUE (wait, current);
current->state = TASK_INTERRUPTIBLE; add_wait_queue (&pool->waitq, &wait); spin_unlock_irqrestore (&pool->lock, flags);
schedule_timeout (POOL_TIMEOUT_JIFFIES);
current->state = TASK_RUNNING; remove_wait_queue (&pool->waitq, &wait); goto restart; } retval = 0; goto done; }
clear_bit (0, &page->bitmap [0]); offset = 0; ready: retval = offset + page->vaddr; *handle = offset + page->dma; done: spin_unlock_irqrestore (&pool->lock, flags); return retval; }
static struct pci_page * pool_find_page (struct pci_pool *pool, dma_addr_t dma) { unsigned long flags; struct list_head *entry; struct pci_page *page;
spin_lock_irqsave (&pool->lock, flags); list_for_each (entry, &pool->page_list) { page = list_entry (entry, struct pci_page, page_list); if (dma < page->dma) continue; if (dma < (page->dma + pool->allocation)) goto done; } page = 0; done: spin_unlock_irqrestore (&pool->lock, flags); return page; }
/** * pci_pool_free - put block back into pci pool * @pool: the pci pool holding the block * @vaddr: virtual address of block * @dma: dma address of block * * Caller promises neither device nor driver will again touch this block * unless it is first re-allocated. */ void pci_pool_free (struct pci_pool *pool, void *vaddr, dma_addr_t dma) { struct pci_page *page; unsigned long flags; int map, block;
if ((page = pool_find_page (pool, dma)) == 0) { printk (KERN_ERR "pci_pool_free %s/%s, %p/%x (bad dma)\n", pool->dev ? pool->dev->slot_name : NULL, pool->name, vaddr, dma); return; } #ifdef CONFIG_PCIPOOL_DEBUG if (((dma - page->dma) + (void *)page->vaddr) != vaddr) { printk (KERN_ERR "pci_pool_free %s/%s, %p (bad vaddr)/%x\n", pool->dev ? pool->dev->slot_name : NULL, pool->name, vaddr, dma); return; } #endif
block = dma - page->dma; block /= pool->size; map = block / BITS_PER_LONG; block %= BITS_PER_LONG;
#ifdef CONFIG_PCIPOOL_DEBUG if (page->bitmap [map] & (1UL << block)) { printk (KERN_ERR "pci_pool_free %s/%s, dma %x already free\n", pool->dev ? pool->dev->slot_name : NULL, pool->name, dma); return; } #endif if (pool->flags & SLAB_POISON) memset (vaddr, POOL_POISON_BYTE, pool->size);
spin_lock_irqsave (&pool->lock, flags); set_bit (block, &page->bitmap [map]); if (waitqueue_active (&pool->waitq)) wake_up (&pool->waitq); /* * Resist a temptation to do * if (!is_page_busy(bpp, page->bitmap)) pool_free_page(pool, page); * it is not interrupt safe. Better have empty pages hang around. */ spin_unlock_irqrestore (&pool->lock, flags); }
EXPORT_SYMBOL (pci_pool_create); EXPORT_SYMBOL (pci_pool_destroy); EXPORT_SYMBOL (pci_pool_alloc); EXPORT_SYMBOL (pci_pool_free);
|