Viewing file: quickmath.c (2.36 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/*
3DKIT version 1.3 High speed 3D graphics and rendering library for Linux.
Copyright (C) 1996, 1997 Paul Sheer psheer@icon.co.za
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <math.h> #include "quickmath.h"
inline double fsqr (double x) { return x * x; }
inline long lsqr (long x) { return (long) x * x; }
inline double fmax (double a, double b) { return max(a, b); }
inline double fmin (double a, double b) { return min(a, b); }
inline double fsgn (double a) { return (a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0)); }
inline double dot (Vec a, Vec b) { return a.x * b.x + a.y * b.y + a.z * b.z; }
Vec cross (Vec a, Vec b) { Vec c; c.x = a.y * b.z - a.z * b.y; c.y = a.z * b.x - a.x * b.z; c.z = a.x * b.y - a.y * b.x; return c; }
Vec plus (Vec a, Vec b) { Vec c; c.x = a.x + b.x; c.y = a.y + b.y; c.z = a.z + b.z; return c; }
Vec minus (Vec a, Vec b) { Vec c; c.x = a.x - b.x; c.y = a.y - b.y; c.z = a.z - b.z; return c; }
Vec times (Vec a, double f) { Vec c; c.x = a.x * f; c.y = a.y * f; c.z = a.z * f; return c; }
double norm (Vec a) { return sqrt (sqr(a.x) + sqr(a.y) + sqr(a.z)); }
void orth_vectors(Vec X, Vec *r1, Vec *r2, double r) { if (X.x == 0 && X.y == 0) { r1->x = 1; r1->y = 0; r1->z = 0; } else { r1->x = X.y / sqrt (X.x * X.x + X.y * X.y); r1->y = -X.x / sqrt (X.x * X.x + X.y * X.y); r1->z = 0; } *r1 = times (*r1, r); /* r1 now has length r */
*r2 = cross (X, *r1); *r2 = times (*r2, r / norm (*r2)); /* r2 now has length r */
/* r1 and r2 are now two vectors prependicular to each other and to (x,y,z) */ }
|