Viewing file: skbuff.h (29.65 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
/* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, <gw4pts@gw4pts.ampr.org> * Florian La Roche, <rzsfl@rz.uni-sb.de> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H
#include <linux/config.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/time.h> #include <linux/cache.h>
#include <asm/atomic.h> #include <asm/types.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/highmem.h>
#define HAVE_ALLOC_SKB /* For the drivers to know */ #define HAVE_ALIGNABLE_SKB /* Ditto 8) */ #define SLAB_SKB /* Slabified skbuffs */
#define CHECKSUM_NONE 0 #define CHECKSUM_HW 1 #define CHECKSUM_UNNECESSARY 2
#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES-1)) & ~(SMP_CACHE_BYTES-1)) #define SKB_MAX_ORDER(X,ORDER) (((PAGE_SIZE<<(ORDER)) - (X) - sizeof(struct skb_shared_info))&~(SMP_CACHE_BYTES-1)) #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X),0)) #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0,2))
/* A. Checksumming of received packets by device. * * NONE: device failed to checksum this packet. * skb->csum is undefined. * * UNNECESSARY: device parsed packet and wouldbe verified checksum. * skb->csum is undefined. * It is bad option, but, unfortunately, many of vendors do this. * Apparently with secret goal to sell you new device, when you * will add new protocol to your host. F.e. IPv6. 8) * * HW: the most generic way. Device supplied checksum of _all_ * the packet as seen by netif_rx in skb->csum. * NOTE: Even if device supports only some protocols, but * is able to produce some skb->csum, it MUST use HW, * not UNNECESSARY. * * B. Checksumming on output. * * NONE: skb is checksummed by protocol or csum is not required. * * HW: device is required to csum packet as seen by hard_start_xmit * from skb->h.raw to the end and to record the checksum * at skb->h.raw+skb->csum. * * Device must show its capabilities in dev->features, set * at device setup time. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum * everything. * NETIF_F_NO_CSUM - loopback or reliable single hop media. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only * TCP/UDP over IPv4. Sigh. Vendors like this * way by an unknown reason. Though, see comment above * about CHECKSUM_UNNECESSARY. 8) * * Any questions? No questions, good. --ANK */
#ifdef __i386__ #define NET_CALLER(arg) (*(((void**)&arg)-1)) #else #define NET_CALLER(arg) __builtin_return_address(0) #endif
#ifdef CONFIG_NETFILTER struct nf_conntrack { atomic_t use; void (*destroy)(struct nf_conntrack *); };
struct nf_ct_info { struct nf_conntrack *master; }; #endif
struct sk_buff_head { /* These two members must be first. */ struct sk_buff * next; struct sk_buff * prev;
__u32 qlen; spinlock_t lock; };
struct sk_buff;
#define MAX_SKB_FRAGS 6
typedef struct skb_frag_struct skb_frag_t;
struct skb_frag_struct { struct page *page; __u16 page_offset; __u16 size; };
/* This data is invariant across clones and lives at * the end of the header data, ie. at skb->end. */ struct skb_shared_info { atomic_t dataref; unsigned int nr_frags; struct sk_buff *frag_list; skb_frag_t frags[MAX_SKB_FRAGS]; };
struct sk_buff { /* These two members must be first. */ struct sk_buff * next; /* Next buffer in list */ struct sk_buff * prev; /* Previous buffer in list */
struct sk_buff_head * list; /* List we are on */ struct sock *sk; /* Socket we are owned by */ struct timeval stamp; /* Time we arrived */ struct net_device *dev; /* Device we arrived on/are leaving by */
/* Transport layer header */ union { struct tcphdr *th; struct udphdr *uh; struct icmphdr *icmph; struct igmphdr *igmph; struct iphdr *ipiph; struct spxhdr *spxh; unsigned char *raw; } h;
/* Network layer header */ union { struct iphdr *iph; struct ipv6hdr *ipv6h; struct arphdr *arph; struct ipxhdr *ipxh; unsigned char *raw; } nh; /* Link layer header */ union { struct ethhdr *ethernet; unsigned char *raw; } mac;
struct dst_entry *dst;
/* * This is the control buffer. It is free to use for every * layer. Please put your private variables there. If you * want to keep them across layers you have to do a skb_clone() * first. This is owned by whoever has the skb queued ATM. */ char cb[48];
unsigned int len; /* Length of actual data */ unsigned int data_len; unsigned int csum; /* Checksum */ unsigned char __unused, /* Dead field, may be reused */ cloned, /* head may be cloned (check refcnt to be sure). */ pkt_type, /* Packet class */ ip_summed; /* Driver fed us an IP checksum */ __u32 priority; /* Packet queueing priority */ atomic_t users; /* User count - see datagram.c,tcp.c */ unsigned short protocol; /* Packet protocol from driver. */ unsigned short security; /* Security level of packet */ unsigned int truesize; /* Buffer size */
unsigned char *head; /* Head of buffer */ unsigned char *data; /* Data head pointer */ unsigned char *tail; /* Tail pointer */ unsigned char *end; /* End pointer */
void (*destructor)(struct sk_buff *); /* Destruct function */ #ifdef CONFIG_NETFILTER /* Can be used for communication between hooks. */ unsigned long nfmark; /* Cache info */ __u32 nfcache; /* Associated connection, if any */ struct nf_ct_info *nfct; #ifdef CONFIG_NETFILTER_DEBUG unsigned int nf_debug; #endif #endif /*CONFIG_NETFILTER*/
#if defined(CONFIG_HIPPI) union{ __u32 ifield; } private; #endif
#ifdef CONFIG_NET_SCHED __u32 tc_index; /* traffic control index */ #endif };
#define SK_WMEM_MAX 65535 #define SK_RMEM_MAX 65535
#ifdef __KERNEL__ /* * Handling routines are only of interest to the kernel */ #include <linux/slab.h>
#include <asm/system.h>
extern void __kfree_skb(struct sk_buff *skb); extern struct sk_buff * alloc_skb(unsigned int size, int priority); extern void kfree_skbmem(struct sk_buff *skb); extern struct sk_buff * skb_clone(struct sk_buff *skb, int priority); extern struct sk_buff * skb_copy(const struct sk_buff *skb, int priority); extern struct sk_buff * pskb_copy(struct sk_buff *skb, int gfp_mask); extern int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, int gfp_mask); extern struct sk_buff * skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom); extern struct sk_buff * skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, int priority); #define dev_kfree_skb(a) kfree_skb(a) extern void skb_over_panic(struct sk_buff *skb, int len, void *here); extern void skb_under_panic(struct sk_buff *skb, int len, void *here);
/* Internal */ #define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
/** * skb_queue_empty - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. */ static inline int skb_queue_empty(struct sk_buff_head *list) { return (list->next == (struct sk_buff *) list); }
/** * skb_get - reference buffer * @skb: buffer to reference * * Makes another reference to a socket buffer and returns a pointer * to the buffer. */ static inline struct sk_buff *skb_get(struct sk_buff *skb) { atomic_inc(&skb->users); return skb; }
/* * If users==1, we are the only owner and are can avoid redundant * atomic change. */ /** * kfree_skb - free an sk_buff * @skb: buffer to free * * Drop a reference to the buffer and free it if the usage count has * hit zero. */ static inline void kfree_skb(struct sk_buff *skb) { if (atomic_read(&skb->users) == 1 || atomic_dec_and_test(&skb->users)) __kfree_skb(skb); }
/* Use this if you didn't touch the skb state [for fast switching] */ static inline void kfree_skb_fast(struct sk_buff *skb) { if (atomic_read(&skb->users) == 1 || atomic_dec_and_test(&skb->users)) kfree_skbmem(skb); }
/** * skb_cloned - is the buffer a clone * @skb: buffer to check * * Returns true if the buffer was generated with skb_clone() and is * one of multiple shared copies of the buffer. Cloned buffers are * shared data so must not be written to under normal circumstances. */
static inline int skb_cloned(struct sk_buff *skb) { return skb->cloned && atomic_read(&skb_shinfo(skb)->dataref) != 1; }
/** * skb_shared - is the buffer shared * @skb: buffer to check * * Returns true if more than one person has a reference to this * buffer. */ static inline int skb_shared(struct sk_buff *skb) { return (atomic_read(&skb->users) != 1); }
/** * skb_share_check - check if buffer is shared and if so clone it * @skb: buffer to check * @pri: priority for memory allocation * * If the buffer is shared the buffer is cloned and the old copy * drops a reference. A new clone with a single reference is returned. * If the buffer is not shared the original buffer is returned. When * being called from interrupt status or with spinlocks held pri must * be GFP_ATOMIC. * * NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri) { if (skb_shared(skb)) { struct sk_buff *nskb; nskb = skb_clone(skb, pri); kfree_skb(skb); return nskb; } return skb; }
/* * Copy shared buffers into a new sk_buff. We effectively do COW on * packets to handle cases where we have a local reader and forward * and a couple of other messy ones. The normal one is tcpdumping * a packet thats being forwarded. */ /** * skb_unshare - make a copy of a shared buffer * @skb: buffer to check * @pri: priority for memory allocation * * If the socket buffer is a clone then this function creates a new * copy of the data, drops a reference count on the old copy and returns * the new copy with the reference count at 1. If the buffer is not a clone * the original buffer is returned. When called with a spinlock held or * from interrupt state @pri must be %GFP_ATOMIC * * %NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri) { struct sk_buff *nskb; if(!skb_cloned(skb)) return skb; nskb=skb_copy(skb, pri); kfree_skb(skb); /* Free our shared copy */ return nskb; }
/** * skb_peek * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the head element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) { struct sk_buff *list = ((struct sk_buff *)list_)->next; if (list == (struct sk_buff *)list_) list = NULL; return list; }
/** * skb_peek_tail * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the tail element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */
static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) { struct sk_buff *list = ((struct sk_buff *)list_)->prev; if (list == (struct sk_buff *)list_) list = NULL; return list; }
/** * skb_queue_len - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. */ static inline __u32 skb_queue_len(struct sk_buff_head *list_) { return(list_->qlen); }
static inline void skb_queue_head_init(struct sk_buff_head *list) { spin_lock_init(&list->lock); list->prev = (struct sk_buff *)list; list->next = (struct sk_buff *)list; list->qlen = 0; }
/* * Insert an sk_buff at the start of a list. * * The "__skb_xxxx()" functions are the non-atomic ones that * can only be called with interrupts disabled. */
/** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { struct sk_buff *prev, *next;
newsk->list = list; list->qlen++; prev = (struct sk_buff *)list; next = prev->next; newsk->next = next; newsk->prev = prev; next->prev = newsk; prev->next = newsk; }
/** * skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */
static inline void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags;
spin_lock_irqsave(&list->lock, flags); __skb_queue_head(list, newsk); spin_unlock_irqrestore(&list->lock, flags); }
/** * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the end of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */
static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { struct sk_buff *prev, *next;
newsk->list = list; list->qlen++; next = (struct sk_buff *)list; prev = next->prev; newsk->next = next; newsk->prev = prev; next->prev = newsk; prev->next = newsk; }
/** * skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the tail of the list. This function takes the * list lock and can be used safely with other locking &sk_buff functions * safely. * * A buffer cannot be placed on two lists at the same time. */
static inline void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { unsigned long flags;
spin_lock_irqsave(&list->lock, flags); __skb_queue_tail(list, newsk); spin_unlock_irqrestore(&list->lock, flags); }
/** * __skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. This function does not take any locks * so must be used with appropriate locks held only. The head item is * returned or %NULL if the list is empty. */
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) { struct sk_buff *next, *prev, *result;
prev = (struct sk_buff *) list; next = prev->next; result = NULL; if (next != prev) { result = next; next = next->next; list->qlen--; next->prev = prev; prev->next = next; result->next = NULL; result->prev = NULL; result->list = NULL; } return result; }
/** * skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. The list lock is taken so the function * may be used safely with other locking list functions. The head item is * returned or %NULL if the list is empty. */
static inline struct sk_buff *skb_dequeue(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result;
spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue(list); spin_unlock_irqrestore(&list->lock, flags); return result; }
/* * Insert a packet on a list. */
static inline void __skb_insert(struct sk_buff *newsk, struct sk_buff * prev, struct sk_buff *next, struct sk_buff_head * list) { newsk->next = next; newsk->prev = prev; next->prev = newsk; prev->next = newsk; newsk->list = list; list->qlen++; }
/** * skb_insert - insert a buffer * @old: buffer to insert before * @newsk: buffer to insert * * Place a packet before a given packet in a list. The list locks are taken * and this function is atomic with respect to other list locked calls * A buffer cannot be placed on two lists at the same time. */
static inline void skb_insert(struct sk_buff *old, struct sk_buff *newsk) { unsigned long flags;
spin_lock_irqsave(&old->list->lock, flags); __skb_insert(newsk, old->prev, old, old->list); spin_unlock_irqrestore(&old->list->lock, flags); }
/* * Place a packet after a given packet in a list. */
static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk) { __skb_insert(newsk, old, old->next, old->list); }
/** * skb_append - append a buffer * @old: buffer to insert after * @newsk: buffer to insert * * Place a packet after a given packet in a list. The list locks are taken * and this function is atomic with respect to other list locked calls. * A buffer cannot be placed on two lists at the same time. */
static inline void skb_append(struct sk_buff *old, struct sk_buff *newsk) { unsigned long flags;
spin_lock_irqsave(&old->list->lock, flags); __skb_append(old, newsk); spin_unlock_irqrestore(&old->list->lock, flags); }
/* * remove sk_buff from list. _Must_ be called atomically, and with * the list known.. */ static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { struct sk_buff * next, * prev;
list->qlen--; next = skb->next; prev = skb->prev; skb->next = NULL; skb->prev = NULL; skb->list = NULL; next->prev = prev; prev->next = next; }
/** * skb_unlink - remove a buffer from a list * @skb: buffer to remove * * Place a packet after a given packet in a list. The list locks are taken * and this function is atomic with respect to other list locked calls * * Works even without knowing the list it is sitting on, which can be * handy at times. It also means that THE LIST MUST EXIST when you * unlink. Thus a list must have its contents unlinked before it is * destroyed. */
static inline void skb_unlink(struct sk_buff *skb) { struct sk_buff_head *list = skb->list;
if(list) { unsigned long flags;
spin_lock_irqsave(&list->lock, flags); if(skb->list == list) __skb_unlink(skb, skb->list); spin_unlock_irqrestore(&list->lock, flags); } }
/* XXX: more streamlined implementation */
/** * __skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. This function does not take any locks * so must be used with appropriate locks held only. The tail item is * returned or %NULL if the list is empty. */
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek_tail(list); if (skb) __skb_unlink(skb, list); return skb; }
/** * skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. The list lock is taken so the function * may be used safely with other locking list functions. The tail item is * returned or %NULL if the list is empty. */
static inline struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) { unsigned long flags; struct sk_buff *result;
spin_lock_irqsave(&list->lock, flags); result = __skb_dequeue_tail(list); spin_unlock_irqrestore(&list->lock, flags); return result; }
static inline int skb_is_nonlinear(const struct sk_buff *skb) { return skb->data_len; }
static inline int skb_headlen(const struct sk_buff *skb) { return skb->len - skb->data_len; }
#define SKB_PAGE_ASSERT(skb) do { if (skb_shinfo(skb)->nr_frags) out_of_line_bug(); } while (0) #define SKB_FRAG_ASSERT(skb) do { if (skb_shinfo(skb)->frag_list) out_of_line_bug(); } while (0) #define SKB_LINEAR_ASSERT(skb) do { if (skb_is_nonlinear(skb)) out_of_line_bug(); } while (0)
/* * Add data to an sk_buff */ static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) { unsigned char *tmp=skb->tail; SKB_LINEAR_ASSERT(skb); skb->tail+=len; skb->len+=len; return tmp; }
/** * skb_put - add data to a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer. If this would * exceed the total buffer size the kernel will panic. A pointer to the * first byte of the extra data is returned. */ static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) { unsigned char *tmp=skb->tail; SKB_LINEAR_ASSERT(skb); skb->tail+=len; skb->len+=len; if(skb->tail>skb->end) { skb_over_panic(skb, len, current_text_addr()); } return tmp; }
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) { skb->data-=len; skb->len+=len; return skb->data; }
/** * skb_push - add data to the start of a buffer * @skb: buffer to use * @len: amount of data to add * * This function extends the used data area of the buffer at the buffer * start. If this would exceed the total buffer headroom the kernel will * panic. A pointer to the first byte of the extra data is returned. */
static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) { skb->data-=len; skb->len+=len; if(skb->data<skb->head) { skb_under_panic(skb, len, current_text_addr()); } return skb->data; }
static inline char *__skb_pull(struct sk_buff *skb, unsigned int len) { skb->len-=len; if (skb->len < skb->data_len) out_of_line_bug(); return skb->data+=len; }
/** * skb_pull - remove data from the start of a buffer * @skb: buffer to use * @len: amount of data to remove * * This function removes data from the start of a buffer, returning * the memory to the headroom. A pointer to the next data in the buffer * is returned. Once the data has been pulled future pushes will overwrite * the old data. */
static inline unsigned char * skb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb->len) return NULL; return __skb_pull(skb,len); }
extern unsigned char * __pskb_pull_tail(struct sk_buff *skb, int delta);
static inline char *__pskb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb_headlen(skb) && __pskb_pull_tail(skb, len-skb_headlen(skb)) == NULL) return NULL; skb->len -= len; return skb->data += len; }
static inline unsigned char * pskb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb->len) return NULL; return __pskb_pull(skb,len); }
static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) { if (len <= skb_headlen(skb)) return 1; if (len > skb->len) return 0; return (__pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL); }
/** * skb_headroom - bytes at buffer head * @skb: buffer to check * * Return the number of bytes of free space at the head of an &sk_buff. */ static inline int skb_headroom(const struct sk_buff *skb) { return skb->data-skb->head; }
/** * skb_tailroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff */
static inline int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end-skb->tail; }
/** * skb_reserve - adjust headroom * @skb: buffer to alter * @len: bytes to move * * Increase the headroom of an empty &sk_buff by reducing the tail * room. This is only allowed for an empty buffer. */
static inline void skb_reserve(struct sk_buff *skb, unsigned int len) { skb->data+=len; skb->tail+=len; }
extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
static inline void __skb_trim(struct sk_buff *skb, unsigned int len) { if (!skb->data_len) { skb->len = len; skb->tail = skb->data+len; } else { ___pskb_trim(skb, len, 0); } }
/** * skb_trim - remove end from a buffer * @skb: buffer to alter * @len: new length * * Cut the length of a buffer down by removing data from the tail. If * the buffer is already under the length specified it is not modified. */
static inline void skb_trim(struct sk_buff *skb, unsigned int len) { if (skb->len > len) { __skb_trim(skb, len); } }
static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) { if (!skb->data_len) { skb->len = len; skb->tail = skb->data+len; return 0; } else { return ___pskb_trim(skb, len, 1); } }
static inline int pskb_trim(struct sk_buff *skb, unsigned int len) { if (len < skb->len) return __pskb_trim(skb, len); return 0; }
/** * skb_orphan - orphan a buffer * @skb: buffer to orphan * * If a buffer currently has an owner then we call the owner's * destructor function and make the @skb unowned. The buffer continues * to exist but is no longer charged to its former owner. */
static inline void skb_orphan(struct sk_buff *skb) { if (skb->destructor) skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; }
/** * skb_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function takes the list * lock and is atomic with respect to other list locking functions. */
static inline void skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb=skb_dequeue(list))!=NULL) kfree_skb(skb); }
/** * __skb_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function does not take the * list lock and the caller must hold the relevant locks to use it. */
static inline void __skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb=__skb_dequeue(list))!=NULL) kfree_skb(skb); }
/** * __dev_alloc_skb - allocate an skbuff for sending * @length: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned in there is no free memory. */ static inline struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask) { struct sk_buff *skb;
skb = alloc_skb(length+16, gfp_mask); if (skb) skb_reserve(skb,16); return skb; }
/** * dev_alloc_skb - allocate an skbuff for sending * @length: length to allocate * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned in there is no free memory. Although this function * allocates memory it can be called from an interrupt. */ static inline struct sk_buff *dev_alloc_skb(unsigned int length) { return __dev_alloc_skb(length, GFP_ATOMIC); }
/** * skb_cow - copy header of skb when it is required * @skb: buffer to cow * @headroom: needed headroom * * If the skb passed lacks sufficient headroom or its data part * is shared, data is reallocated. If reallocation fails, an error * is returned and original skb is not changed. * * The result is skb with writable area skb->head...skb->tail * and at least @headroom of space at head. */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) { int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
if (delta < 0) delta = 0;
if (delta || skb_cloned(skb)) return pskb_expand_head(skb, (delta+15)&~15, 0, GFP_ATOMIC); return 0; }
/** * skb_linearize - convert paged skb to linear one * @skb: buffer to linarize * @gfp: allocation mode * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ int skb_linearize(struct sk_buff *skb, int gfp);
static inline void *kmap_skb_frag(const skb_frag_t *frag) { #ifdef CONFIG_HIGHMEM if (in_irq()) out_of_line_bug();
local_bh_disable(); #endif return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ); }
static inline void kunmap_skb_frag(void *vaddr) { kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); #ifdef CONFIG_HIGHMEM local_bh_enable(); #endif }
#define skb_queue_walk(queue, skb) \ for (skb = (queue)->next; \ (skb != (struct sk_buff *)(queue)); \ skb=skb->next)
extern struct sk_buff * skb_recv_datagram(struct sock *sk,unsigned flags,int noblock, int *err); extern unsigned int datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); extern int skb_copy_datagram(const struct sk_buff *from, int offset, char *to,int size); extern int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, struct iovec *to,int size); extern int skb_copy_and_csum_datagram(const struct sk_buff *skb, int offset, u8 *to, int len, unsigned int *csump); extern int skb_copy_and_csum_datagram_iovec(const struct sk_buff *skb, int hlen, struct iovec *iov); extern void skb_free_datagram(struct sock * sk, struct sk_buff *skb);
extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, int len, unsigned int csum); extern int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len, unsigned int csum); extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
extern void skb_init(void); extern void skb_add_mtu(int mtu);
#ifdef CONFIG_NETFILTER static inline void nf_conntrack_put(struct nf_ct_info *nfct) { if (nfct && atomic_dec_and_test(&nfct->master->use)) nfct->master->destroy(nfct->master); } static inline void nf_conntrack_get(struct nf_ct_info *nfct) { if (nfct) atomic_inc(&nfct->master->use); } #endif
#endif /* __KERNEL__ */ #endif /* _LINUX_SKBUFF_H */
|