Software: Apache/2.0.54 (Unix) mod_perl/1.99_09 Perl/v5.8.0 mod_ssl/2.0.54 OpenSSL/0.9.7l DAV/2 FrontPage/5.0.2.2635 PHP/4.4.0 mod_gzip/2.0.26.1a uname -a: Linux snow.he.net 4.4.276-v2-mono-1 #1 SMP Wed Jul 21 11:21:17 PDT 2021 i686 uid=99(nobody) gid=98(nobody) groups=98(nobody) Safe-mode: OFF (not secure) /opt/doc/python-2.3.4/html/Python-Docs-2.3.4/lib/ drwxr-xr-x | |
| Viewing file: Select action/file-type: 5.11.1 Theory(This explanation is due to François Pinard. The Python code for this module was contributed by Kevin O'Connor.)
Heaps are arrays for which
The strange invariant above is meant to be an efficient memory
representation for a tournament. The numbers below are k, not
0
1 2
3 4 5 6
7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
In the tree above, each cell k is topping If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to remove it and find the "next" winner is to move some loser (let's say cell 30 in the diagram above) into the 0 position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort. A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the inserted items are not "better" than the last 0'th element you extracted. This is especially useful in simulation contexts, where the tree holds all incoming events, and the "win" condition means the smallest scheduled time. When an event schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-). Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case. However, there are other representations which are more efficient overall, yet the worst cases might be terrible. Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing "runs" (which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging passes for these runs, which merging is often very cleverly organised5.1. It is very important that the initial sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament, you replace and percolate items that happen to fit the current run, you'll produce runs which are twice the size of the memory for random input, and much better for input fuzzily ordered. Moreover, if you output the 0'th item on disk and get an input which may not fit in the current tournament (because the value "wins" over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and quite effective!
In a word, heaps are useful memory structures to know. I use them in
a few applications, and I think it is good to keep a `heap' module
around. :-)
Footnotes
|
:: Command execute :: | |
--[ c99shell v. 1.0 pre-release build #13 powered by Captain Crunch Security Team | http://ccteam.ru | Generation time: 0.0217 ]-- |